in 1822, Jean Baptiste Fourier developed the theory that shows that any real waveform can be represented by the sum of sinusoidal waves.

Let we try to create the square wave as a sum of sine waves of different frequencies

Square wave. \(F=40\text{Hz}, A=1.5\text{V} \)

Jean Baptiste Joseph Fourier
(1768 – 1830)
\[A_1 \sin(2\pi \omega t) \]

\[A_1 \sin(2\pi \omega t) + A_3 \sin(2\pi 3\omega t + \phi_3) \]

\[A_1 \sin(2\pi \omega t) + A_3 \sin(2\pi 3\omega t + \phi_3) + A_5 \sin(2\pi 5\omega t + \phi_5) \]

\[A_1 \sin(2\pi \omega t) + A_3 \sin(2\pi 3\omega t + \phi_3) + A_5 \sin(2\pi 5\omega t + \phi_5) + A_7 \sin(2\pi 7\omega t + \phi_7) \]
The continues Fourier transformation of the signal $h(t)$ can be written as:

$$H(f) = \int_{-\infty}^{+\infty} h(t)e^{2\pi jft} dt; \quad j=\sqrt{-1}$$

$H(f)$ represents in frequency domain mode the time domain signal $h(t)$.

Equation for inverse Fourier transform gives the correspondence of the infinite continues frequency spectra to the corresponding time domain signal.

$$h(t) = \int_{-\infty}^{+\infty} H(f)e^{-2\pi jft} df$$

In real life we working with discrete representation of the time domain signal recorded during a finite time.
It comes out that in practice more useful is the representation the frequency domain pattern of the time domain signal h_k as sum of the frequency harmonic calculated as:

$$H_n = H(f_n) = \frac{1}{N} \sum_{k=0}^{N-1} h_k e^{2\pi kn/N}$$

Δ is the sampling interval, N – number of collected points
For periodic signals with period T_0:

$$F(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nt}{T_0}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T_0}\right)$$

$$a_n = \frac{2}{T_0} \int_{0}^{T_0} F(t) \cos\left(\frac{2\pi nt}{T_0}\right) dt; \quad b_n = \frac{2}{T_0} \int_{0}^{T_0} F(t) \sin\left(\frac{2\pi nt}{T_0}\right) dt;$$

$$a_0 = \frac{2}{T_0} \int_{0}^{T_0} F(t) dt;$$
Now how I found the amplitudes of the harmonics to compose the square wave signal from sine waves of different frequencies.

Decomposition the signal into the sine wave harmonics. The only modulus's of the harmonics amplitudes are presented in this picture.
We applying the sine wave signal to the tested object and measuring the response. Varying the frequency we can study the frequency properties of the system.
Now about the most powerful tool which can be used in frequency domain technique.

John H. Scofield
American Journal of Physics 62 (2)
129-133 (Feb. 1994).

*PSD - phase sensitive detector;
**VCO - voltage controlled oscillator*
The DC output signal is a magnitude of the product of the input and reference signals. AC components of output signal are filtered out by the low-pass filter with time constant τ (her $\tau=RC$).
Lock-in Amplifier. What is the Advantage of Using Synchronous Detecting?

DMM, lock-in etc.

Measuring equipment

Results as DC voltage corresponding U_{AMP}, U_{RMS} ...

$U(t)$

AC

$U(t)$

R

C

1

2

2/1/2016
Lock-in Amplifier. What is the Advantage of Using Synchronous Detecting?

1. Clean sine wave – no “noise”

$U_{DC} = 0.63643V$

We need to measure the amplitude/rms value of the sine wave
Lock-in Amplifier. What is the Advantage of Using Synchronous Detecting?

"Noisy" sine wave

\[U_{DC} = 0.64208 \text{V} \]

compare to

\[U_{DC} = 0.63643 \text{V} \]
Lock-in Amplifier. What is the Advantage of Using Synchronous Detecting?

Clear sine wave – no “noise”

U_{DC} = 0.63643 V

"Noisy" sine wave

U_{DC} = 0.63643 V
$V_0 \sin(\omega t + \phi)$

$\phi = \pi/4$, $V_{out} = 0.72V_{in}$

$V_{in} = \sin(\omega t + \pi/4)$

Lock-in Amplifier. Phase shift.
In many scientific applications it is a great advantage to measure both components \((E_x, E_y)\) of the input signal. We can use two lock-ins to do this or we can measure these values in two steps providing the phase shift of reference signal \(0\) and \(\pi/2\). Much better solution is to use the lock-in amplifier equipped by two demodulators.

\[
E_{in} = E_0 \sin(\omega t + \phi)
\]

\[
\sin(\omega t) \quad \text{to } E_x \text{ channel}
\]

\[
\text{cos}(\omega t) \quad \text{to } E_y \text{ channel}
\]

\[
E_y \quad \text{to } X \text{ channel}
\]

\[
E_x \quad \text{to } Y \text{ channel}
\]
Digital Lock-in Amplifier

\[e_{in} \]

Input amplifier

ADC

DSP

DAC

Digital interface

External reference signal

Asin(\(\omega t + \phi\))

Internal Function generator

Analog outputs
SR830. Digital Lock-in Amplifier

In SR830 manual you can find the chapter dedicated to general description of the lock-in amplifier idea.

WHAT IS A LOCK-IN AMPLIFIER?

Lock-in amplifiers are used to detect and measure very small AC signals - all the way down to a few nanovolts! Accurate measurements may be made even when the small signal is obscured by noise...
Digital Lock-in amplifier. SR830

- Channel#1
- Channel#2
- Time constant
- And output filter
- Sensitivity
- Auto functions
- Inputs
- Notch filter settings
- Analog outputs
- Interface settings
- Function generator

STANFORD RESEARCH SYSTEMS
Model SR830 DSP Lock-In Amplifier

2/1/2016
illinois.edu
Experiments. Main idea. Investigating the frequency response of circuit.

Frequency domain representation of the system:

\[\tilde{V}_{in}(\omega) \xrightarrow{H(\omega)} \tilde{V}_{out}(\omega) \]

Response function:

\[\tilde{H}(\omega) = \frac{\tilde{V}_{out}(\omega)}{\tilde{V}_{in}(\omega)} \]

Linear systems are those that can be modeled by linear differential equations.
Application of the Lock-in Amplifier for Study of the Transfer Function of the RLC Circuit

Setup for measurement of the transfer function of the RLC circuit.

$$h(\omega) \equiv \frac{e_{\text{out}}}{e_{\text{in}}}$$
Experiments. Main Idea.
Calculation of the Response Function in Frequency Domain Mode.

Example 1. High-pass filter.

Applying the Kirchhoff Law to this simple network

\[
\tilde{V}_{out}(\omega) = \tilde{H}(\omega) \ast \tilde{V}_{in}(\omega) = \tilde{V}_{in}(\omega) \frac{\tilde{Z}_2(\omega)}{\tilde{Z}_1(\omega) + \tilde{Z}_2(\omega)}
\]
Experiments. Calculation of the Response Function in Frequency Domain Mode. High-pass Filter

Ideal case

\[\frac{\tilde{Z}_R}{j\omega C} = R \]
\[\frac{\tilde{Z}_L}{j\omega C} = j\omega L \]
\[\frac{\tilde{Z}_C}{j\omega C} = \frac{-j}{\omega C} \]

More realistic

\[\frac{\tilde{Z}_R}{j\omega C} = R + ... \]
\[\frac{\tilde{Z}_L}{j\omega C} = j\omega L + R_L \]
\[\frac{\tilde{Z}_C}{j\omega C} = \frac{-j}{\omega C + R_C^{-1}} \]

\[\tilde{V}_{out}(\omega) = \tilde{H}(\omega) \ast \tilde{V}_{in}(\omega) = \tilde{V}_{in}(\omega) \frac{\tilde{Z}_2(\omega)}{\tilde{Z}_1(\omega) + \tilde{Z}_2(\omega)} \]
Experiments. Calculation of the Response Function in Frequency Domain Mode. High-pass Filter

\[\tilde{H}(\omega) = H_R(\omega) + jH_I(\omega) = \frac{R}{R + \frac{1}{j\omega C}} = \frac{j\omega RC}{1 + j\omega RC} = \frac{j\omega \tau}{1 + j\omega \tau} = \frac{\omega \tau}{(1 + \omega^2 \tau^2)}(\omega \tau + j); \]

where \[\tau = RC = \omega_c^{-1}; \]

\[|\tilde{H}(\omega)| = \sqrt{H_R^2 + H_I^2} = \frac{\omega \tau}{\sqrt{1 + (\omega \tau)^2}}; \]

\[\theta(\omega) = \arctan\left(\frac{H_I(\omega)}{H_R(\omega)}\right) = \arctan\left(\frac{1}{\omega \tau}\right) \]

\(\tau \) – time constant of the filter

\(\omega_c \) - cutoff frequency
Experiments. Calculation of the Response Function in Frequency Domain Mode. High-pass Filter

\[\text{hi-pass filter: } C=20\text{nF}, R=20\text{K} \]

\[f_c \approx 398\text{Hz} \]

\[V_0 \]

\[\left| H(\omega) \right| = \sqrt{H_R^2 + H_I^2} = \frac{\omega \tau}{\sqrt{1 + (\omega \tau)^2}} \]

\[f_c = \frac{\omega_c}{2\pi} = \frac{1}{2\pi \tau} = \frac{1}{2\pi RC} \]
High-pass Filter. Fitting.

Fitting parameters: V_0, τ, V_{off}

Fitting function:

$$\tilde{V}_{out} = |\tilde{V}_{in}| \cdot |\tilde{H}(\omega)| = V_0 \cdot \frac{\omega \tau}{\sqrt{1 + (\omega \tau)^2}}; \quad \tau = RC$$

$$y = V_0 \times 2\pi \times \tau \times \text{tau} / \sqrt{1 + (2\pi \times \tau)^2} + V_{off}$$

\[\theta(\omega_c) = \arctan(1) = 45^\circ \]

\[f_c \approx 398\text{Hz} \]
Experiments. Calculation of the Response Function in Frequency Domain Mode. Low-pass Filter

\[\tilde{H}(\omega) = H_R(\omega) + j H_I(\omega) = \frac{1}{R + \frac{1}{j \omega C}} = \frac{1}{1 + j \omega RC} = \frac{1}{1 + j \omega \tau} = \frac{1 - j \omega \tau}{(1 + \omega^2 \tau^2)}; \]

where \(\tau = RC = \omega_c^{-1} \);

\[|\tilde{H}(\omega)| = \sqrt{H_R^2 + H_I^2} = \frac{1}{\sqrt{1 + (\omega \tau)^2}}; \quad \theta(\omega) = \arctan \left(\frac{H_I(\omega)}{H_R(\omega)} \right) = -\arctan(\omega \tau) \]
Application of the Lock-in Amplifier for Study of the Transfer Function of the RLC Circuit.

\[
U_C = U_{in} \cdot \frac{Z_C}{Z_C + Z_L + R} = 1 + j\omega L + R
\]

\[
U_C = U_{in} \cdot \frac{Z_C}{Z_C + Z_L + R} = \frac{1}{j\omega C} + j\omega L + R
\]
Application of the Lock-in Amplifier for Study of the Transfer Function of the RLC Circuit

\[H = \frac{U_c}{U_{in}} = \frac{1}{(1 - \omega^2 LC) + j\omega CR} = \frac{1 - \left(\frac{\omega}{\omega_0} \right)^2 - j\omega CR}{\left(1 - \left(\frac{\omega}{\omega_0} \right)^2 \right)^2 + \omega^2 C^2 R^2} \times; \]

\[\omega_0 = \frac{1}{\sqrt{LC}}; \nu \equiv \frac{\omega}{\omega_0}; Q = \frac{1}{R \sqrt{L/C}}; \]

\[H = \frac{(1 - \nu^2) - j\nu}{(1 - \nu^2)^2 + \frac{\nu^2}{Q^2}}; \theta = -\tan^{-1}\left(\frac{\nu}{Q \left(1 - \nu^2 \right)} \right) \]
Application of the Lock-in Amplifier for Study of the Transfer Function of the RLC Circuit.

The resonance curves obtained on RLC circuits with different damping resistors.
Application of the Lock-in Amplifier for Study of the Transfer Function of the RLC Circuit

The resonance curves obtained on RLC circuits with different damping resistors
Fitting. RLC Resonance Circuit.

\[|H| = \sqrt{(1 - \gamma^2)^2 + \left(\frac{\gamma}{Q} \right)^2} \]

\(H = \gamma(1 - \gamma) + \gamma Q + Q_0 \)

Fitting function for \(|H| \)

Variable parameters: \(\omega_0 \) and \(Q \)
Actual damping resistance is
a sum of R, R_L (resistance
of the coil) and R_{out} (output
resistance of the function
generator)

$R=0$; $R_L = 35.8 \Omega$; $R_{out} = 50 \Omega$

Actual R calculated from fitting pars
is $\sim 88.8 \Omega$ what is reasonable close
to 85.8Ω
Fitting. RLC Resonance Circuit.

\[
\theta = \tan^{-1}\left(\frac{Y}{X}\right)
\]

measured

\[
\theta = -\tan^{-1}\left(\frac{\gamma}{Q\left(1 - \gamma^2\right)}\right); \gamma = \frac{\omega}{\omega_0}
\]

fitting function

variable parameters: \(\omega_0\) and \(Q\)
From Time Domain to Frequency Domain. Experiment.

Wavetek
Out
Sync

Lock-in SR830
input
Reference in

F(t) – periodic function $F(t)=F(t+T_0)$:

Time domain pattern

Frequency domain?

$$V = V_0 \left(0 < t \leq \frac{T_0}{2} \right);$$

$$-V_0 \left(\frac{T_0}{2} < t \leq T_0 \right);$$

$$a_n = \frac{2}{T_0} \int_0^{T_0} F(t) \cos \left(\frac{2\pi nt}{T_0} \right) dt;$$

$$b_n = \frac{2}{T_0} \int_0^{T_0} F(t) \sin \left(\frac{2\pi nt}{T_0} \right) dt;$$

$$a_0 = \frac{2}{T_0} \int_0^{T_0} F(t) dt$$
From Time Domain to Frequency Domain. Experiment with SR830. Results.

Time domain

Vₐ₀

T₀

Spectrum measured by SR 830 lock-in amplifier

Frequency domain

Harmonic number

Vₙ

measured

calculated
From Time Domain To Frequency Domain. FFT using Origin. Results.

Data file can be used to convert time domain to frequency domain.

Time domain taken by Tektronix scope.
From Time Domain to Frequency Domain. FFT using Origin. Results.

Time domain taken by Tektronix scope

Spectrum calculated by Origin. Accuracy is limited because of the limited resolution of the scope
From Time Domain to Frequency Domain. Using of the Math Option of the Scope.

Time domain taken by Tektronix scope

Spectrum calculated by Tektronix scope. Accuracy is limited because of the limited resolution of the scope
From Time Domain to Frequency Domain. Using of the Math Option of the Scope.

Spectrum of the square wave signal

Spectrum of the pulse signal
Origin templates for the this week Lab:

- You can find a soft copy of this book in:
- `\engr-file-03\phyinst\APL Courses\PHYCS401\Experiments`