Qualitative Studies with Microwaves

Physics 401, Fall 2018
Eugene V. Colla
Qualitative Studies with Microwaves

The main goals of the Lab:

✓ Refreshing the memory about the electromagnetic waves propagation

✓ Microwaves. Generating and detecting of the microwaves

✓ Microwaves optics experiments

This is two weeks Lab
Microwaves place in the electromagnetic spectrum

The microwave range includes ultra-high frequency (UHF) (0.3–3 GHz), super high frequency (SHF) (3–30 GHz), and extremely high frequency (EHF) (30–300 GHz) signals.
Application of the microwaves

- Microwave oven (2.45GHz)
- Communication (0.8-2.69GHz)
- Satellite TV (4-18GHz)
- Radar (up to 110GHz)
- Motion detector (10.4GHz)
- Weather radar (8-12GHz)
- GPS 1.17-1.575 GHz

*by courtesy Wikipedia
Maxwell equations

\[\nabla \vec{D} = \rho \quad (1) \]

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad (3) \]

\[\nabla \vec{B} = 0 \quad (2) \]

\[\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \quad (4) \]

If \(\rho = 0 \) and \(\vec{J} = 0 \) and taking into account that \(\vec{D} = \varepsilon \vec{E} \) and \(\vec{B} = \mu \vec{H} \), (1) and (4) can be rewritten as

\[\nabla \vec{D} = \varepsilon \left[\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} \right] = \mathbf{0} \]

\[\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} \]
Now assuming that plane wave propagate in z direction and what leads to $E_y = E_z = 0$ and $H_x = H_z = 0$

Now (3) and (4) could be simplified as

$$\frac{\partial E_x}{\partial z} = -\mu \frac{\partial H_y}{\partial t} \quad (5)$$

$$\frac{\partial H_y}{\partial z} = -\varepsilon \frac{\partial E_y}{\partial t} \quad (6)$$

where $\mu = \mu_0 \mu_r$ and $\varepsilon = \varepsilon_0 \varepsilon_r$

μ_0 is the free space permeability, ε_0 is the free space permittivity.

μ_r is permeability of a specific medium, ε_r is permittivity of a specific medium.
Combining (5) and (6) (see Lab write-up for more details) we finally can get the equations of propagation of the plane wave:

\[
\frac{\partial^2 E_x}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 E_x}{\partial t^2} \tag{7}
\]
\[
\frac{\partial^2 H_y}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 H_y}{\partial t^2} \tag{8}
\]

where \(v = \frac{1}{\sqrt{\varepsilon \mu}} \)

\[
E_x = E_{x0} \cos(\omega t - kx)
\]
\[
H_y = H_{y0} \cos(\omega t - kx)
\]

Solution for (7) and (8) can found as

\[H_y = \sqrt{\frac{\varepsilon}{\mu}} E_x \quad \text{or} \quad E_x = Z H_y \]

where \(Z = \sqrt{\frac{\mu}{\varepsilon}} \) known as characteristic impedance of medium

\(k \) is wave vector and is defined as

\[k = \frac{2\pi}{\lambda} \quad \text{or} \quad k = \frac{\omega}{v} \]

For free space \((\varepsilon_r=1 \text{ and } \mu_r=1) \)

\[Z_{fs} = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \text{ohms} \]
Plane wave

\[E_x = E_{x0} \cos(\omega t - kx) \]
\[H_y = H_{y0} \cos(\omega t - kx) \]

\[v = \frac{1}{\sqrt{\varepsilon \mu}} \quad H_y = \sqrt{\frac{\varepsilon}{\mu}} E_x \]

\[Z = \sqrt{\frac{\mu}{\varepsilon}} \quad E_x = Z H_y \quad k = \frac{2\pi}{\lambda} \quad \text{or} \quad k = \frac{\omega}{v} \]

\[Z_{fs} = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377 \text{ohms} \]

For free space (\(\varepsilon_r = 1 \) and \(\mu_r = 1 \))

by courtesy Wikipedia
Generating of the microwaves

Vacuum tubes: klystron, magnetron, traveling wave tube

Solid state devices: FET, tunneling diodes, Gunn diodes

Tunable frequency from 9 to 10GHz; maximum output power 20mW

Microwave oven magnetron; typical power 0.7-1.5kW

Heated cathode as electron source
Klystron. A piece of history.

Russell Harrison
Varian (April 24, 1898 – July 28, 1959)

Sigurd Fergus
Varian (May 4, 1901 – October 18, 1961)

Varian Brothers...Klystron Tube (1940)
Generating of the microwaves. Klystron.

Advantages:
- well defined frequencies,
- high power output

Reflection klystron

High power klystron used in Canberra Deep Space Communications Complex (courtesy of Wikipedia)

Single transit klystron
GENERAL CHARACTERISTICS
Frequency Range 8,500 to 9,660 Mc
Cathode Oxide-coated, indirectly heated
Heater Voltage 6.3 Volts
Heater Current 0.44 Amperes
Experimental setup. Main components.

- Klystron
- Frequency meter
- Attenuator
- Detector
- Horn
- Digital Volt Meter or Oscilloscope
- Microwave Transmitter Arm
- Microwave Receiver Arm
- Detector
- Termination
Experimental setup. Main components.

- **Attenuator**
- **Klystron**
- **Frequency meter**
- **Detector**
Detecting of the microwaves

Taylor expansion for exp function will give:

\[\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \]

\[I = I_0 \left[\exp \left(\frac{eV}{kT} \right) - 1 \right] \]

\[I \propto aV + bV^2 + \ldots \]

If \(V = V_0 \sin \omega t \):

\[b \cdot \frac{V_0^2}{2} \left(1 - \cos 2\omega t \right) \]

And finally:

\[I_{DC} \propto b \frac{V_0^2}{2} + \ldots \]
Detecting of the microwaves

HSCH-9161
HSCH-9162
GaAs Detector Diode

\[f_c \approx 200\text{GHz} \]
Experiments: Michelson interferometer

- **Mirror A**
- **Mirror B**
- **Transmitter**
- **Receiver**
- **Beam splitter**
- **L_R, L_B optical paths (OP) for "red" and "blue" rays**

Condition for constructive interference

\[
2 \left| L_R - L_B \right| = k \lambda
\]

L_R, L_B - optical paths (OP) for "red" and "blue" rays

OP = n*L_G

n – refraction index;

L_G – geometrical length

- **Albert Abraham Michelson**
 (1852 - 1931)
- **The Nobel Prize in Physics 1907**
Experiments:
Michelson interferometer

Physics 403 Lab Michelson interferometer setup
Experiments: Double slit Interference. T. Young 1801

For constructive Interference
\(\Delta r = n\lambda \) or \(d\sin\theta = n\lambda \)

The measured envelope of the diffraction pattern can be defined as:

\[
|\psi_{ss}|^2 = |\psi_0|^2 \left(\frac{\sin x}{x} \right)^2 \times \cos^2 \left[(kd \sin(\theta/2)) \right]
\]

where \(x = kb \sin(\theta/2) \) and \(k = \frac{2\pi}{\lambda} \) is wave vector of the plane wave.
Experiments: Double slit interference

Physics 401 Lab setup and example of the data

distance between slits=7.0 cm, slit width=1.7 cm

$\lambda=3.141\text{cm}$
Experiments: Double slit interference. Fitting

\[|\psi_{ss}|^2 = |\psi_0|^2 \left(\frac{\sin x}{x} \right)^2 \times \cos^2 \left[(kd \sin(\theta / 2)) \right] \]

\[x = kb \sin(\theta / 2) \]

Model	Two slit (User)
Equation | \[y = I_0 \left(\frac{\sin(K_1 \sin(\pi x/360+f))}{K_1 \sin(\pi x/360+f)} \right)^2 \cos^2 \left(K_2 \sin \left(\frac{\pi x}{360} + f \right) \right) + I_{00} \]
Reduced Chi-Sqr | 94.62111
Adj. R-Square | 0.96659

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_0)</td>
<td>190.6014</td>
<td>3.042882</td>
</tr>
<tr>
<td>(K_1)</td>
<td>4.384042</td>
<td>0.074754</td>
</tr>
<tr>
<td>(K_2)</td>
<td>13.51332</td>
<td>0.052244</td>
</tr>
<tr>
<td>(f)</td>
<td>-0.01525</td>
<td>7.19E-04</td>
</tr>
<tr>
<td>(I_{00})</td>
<td>9.572049</td>
<td>1.440409</td>
</tr>
</tbody>
</table>

Here in fitting expression:

\[I_0 = |\psi_0|^2; \]
\[K_1 = kb; \]
\[K_2 = kd \]
Difference of the wave paths of “red” and “blue” rays is:

\[
\Delta S = \sqrt{h^2 + d_1^2} + \sqrt{h^2 + d_2^2} - (d_1 + d_2)
\]

For constructive interference

\[
\Delta S = n\lambda
\]
Total internal reflection experiment. Snell’s law

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

Snell’s law

Equation for critical angle:

\[n_1 \sin \theta_c = n_2 \sin 90^\circ \]

\[\theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right) \]
Total internal reflection experiment

Transmitter

Turntable

Lucite prism

Receiver

n1(lucite)

n2(air)

Experimental setup and the example of the data
Microwave polarization

Transmitter

Polarizer

Receiver

Metallic grid

Etienne-Louis Malus
1775 – 1812

Malus law

\[E = E_0 \cos \theta \]

\[I = I_0 \cos^2 \theta \]
Microwave polarization

I = I₀ \cos^2 \theta

Transmitter

Rotatable receiver

Polarizer

Experimental data

Y = 0.4003 + 2.45233 X
Bragg diffraction

Interference of the EM waves reflected from the crystalline layers

\[n\lambda = 2d \sin \theta \]

Bragg’s Law

The Nobel Prize in Physics 1915

"for their services in the analysis of crystal structure by means of X-rays"

Sir William Henry Bragg 1862-1942

William Lawrence Bragg 1890-1971
Bragg diffraction

Different orientations of the crystal

(100) (110) (210)
In our experiment $\lambda \sim 3\text{cm}$; For cubic symmetry the angles of Bragg peaks can be calculated from:

$$\left(\frac{\lambda}{2d} \right)^2 = \frac{\sin^2 \theta}{h^2 + k^2 + l^2}$$

where h, k, l are the Miller Indices. For crystal with $d=5\text{cm}$ and $\lambda=3\text{cm}$ the 3 first Bragg peaks for (100) orientation can be found at angles: \(~17.5^\circ; 36.9^\circ\text{ and } 64.2^\circ\)
Bragg diffraction

Receiver

Rotating arm

Transmitter

Turntable

Crystal

illinois.edu
Bragg diffraction. Results.*

I (μA)

Θ (degree)

*courtesy of Matthew Stupca
Bragg diffraction. X-rays.

\[\lambda \approx 0.01 \div 10 \text{nm} \]

X-ray tube

courtesy of Wikipedia
Bragg diffraction. X-rays.

X-ray K-series spectral line wavelengths (nm) for some common target materials

<table>
<thead>
<tr>
<th>Target</th>
<th>Kβ₁</th>
<th>Kβ₂</th>
<th>Kα₁</th>
<th>Kα₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.17566</td>
<td>0.17442</td>
<td>0.193604</td>
<td>0.193998</td>
</tr>
<tr>
<td>Co</td>
<td>0.162079</td>
<td>0.160891</td>
<td>0.178897</td>
<td>0.179285</td>
</tr>
<tr>
<td>Ni</td>
<td>0.15001</td>
<td>0.14886</td>
<td>0.165791</td>
<td>0.166175</td>
</tr>
<tr>
<td>Cu</td>
<td>0.139222</td>
<td>0.138109</td>
<td>0.154056</td>
<td>0.154439</td>
</tr>
<tr>
<td>Zr</td>
<td>0.70173</td>
<td>0.68993</td>
<td>0.78593</td>
<td>0.79015</td>
</tr>
<tr>
<td>Mo</td>
<td>0.63229</td>
<td>0.62099</td>
<td>0.70930</td>
<td>0.71359</td>
</tr>
</tbody>
</table>

Courtesy of Matthew Stupca
Bragg diffraction. X-rays.

Study of structural and photoluminescent properties in barium titanate nanocrystals synthesized by hydrothermal process

Ming-Sheng Zhanga,*, Zhen Yina, Qiang Chena, Weifeng Zhangb, Wanchun Chenc

acourtesy of Matthew Stupca
Comments and suggestions

1. Klystron is very hot and the high voltage (~300V) is applied to repeller.

2. You have to do 6 (!) experiment in one Lab session – take care about time management. The most time consuming experiment is the “Bragg diffraction”.

3. Do not put on the tables any extra stuff – this will cause extra reflections of microwaves and could result in smearing of the data.

4. This is two weeks experiment but the equipment for the week 2 will be different. Please finish all week 1 measurements until the end of this week

Good luck!