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SYSTEMATIC AND RANDOM ERRORS:

 Before going into some of the mathematics of statistical error analysis it is 
important to make the distinction between random and systematic errors.  When a given 
measurement is repeated a number of times the values, in general, do not exactly agree.  
This variation is the result of random errors which often arise from a number of factors.  
Some of these are the following:

 (1) Errors of judgment:  (Estimates of a fraction of the smallest division of a 
scale on an instrument may vary in a series of measurements.)

 (2) Fluctuating Conditions:  (Important factors in a given experiment such as 
temperature, pressure, or line voltage may  fluctuate during the measurements, affecting 
the results.)

 (3) Small Disturbances:  (Small mechanical vibrations, and the pickup of 
spurious electrical signals will contribute random errors to some types of measurement.)
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 (4) Lack of Definition in the Quantity Measured:  (For example, 
measurements with a micrometer of the thickness of a steel plate having non-uniform 
surfaces will in general not be reproducible.)

 (5) Randomness in the Quantity Measured:  (Repeated measurements of the 
number of disintegrations per second in a radioactive source will give different values 
because radioactive disintegrations occur randomly in time.)

 Thus when random errors are present, deviations of measured values from the true 
value will vary  in a series of repeated measurements.  However, when systematic errors 
are present in the measurement process the deviations of the measured values from the 
true value will be constant in a series of repeated measurements, provided that the 
instruments used and the conditions under which they  are used remain constant.  An 
example of systematic error would be faulty  graduations of a measuring scale.  Although 
repeated length measurements might agree closely among themselves, they will all be in 
error due to the inaccuracy of the graduations.  Systematic errors can be removed by 
applying corrections (for example, by calibrating an inaccurate scale).  They  are often 
present when least suspected.  Measurement procedures must therefore be carefully 
examined for sources of systematic error.  [One useful way to examine systematic errors 
is to measure the same quantity again, using a completely different method or procedure.  
(This second technique may, of course, contain its own systematic errors.)]

PRECISION AND ACCURACY:

 A measurement is regarded as accurate if the measured values cluster closely  
about the true value.  Thus if an experiment has small systematic errors it  is regarded as 
having high accuracy.  A measurement is said to be precise if the spread of the measured 
values is small.  A precise measurement requires small random errors.  It should be noted 
that a measurement can be very precise but not accurate, if the systematic errors are large.  
This should be kept in mind when applying the following error analysis techniques which 
deal only with random errors.

 The analysis of systematic error is far more complex than that of random error for 
it depends ultimately  on the standards and methods of calibration used for measuring 
equipment and on factors related to the experiment such as line voltage variations, etc.  
When estimates of error in accuracy are available, they should be included in your error 
analysis.  If they are not, you should think carefully  about how such an estimate might be 
obtained.  If time permits, try to obtain it; otherwise, a brief description of how you 
would check experimental accuracy will be considered a valid part of your discussion of 
error.
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THE NORMAL (GAUSSIAN) DISTRIBUTION:

 The normal approximation is a frequently applied mathematical model for 
experimental values, which are grouped about a mean.  It is assumed that if an infinite 
number of measurements were made and plotted, their plot would be the normal error 

curve as shown in Figure 1.  In this plot, x is the parameter of measurement and is 

the fraction of the points which lie between x and  x + dx.  For the limiting case of many 
measurements, µ, the mean of the distribution, is assumed to be the true value for the 
measurement; and σ is a measure of the spread of the distribution about that value due to 
random error in individual observations.

 The treatment which follows is limited to the case of random errors which follow 
the normal law of errors.  We assume that we observe samples drawn from a population 
which follows the normal law of errors.  The term population is used to signify the 
infinite, continuous frequency distribution that describes all possible observations of the 
quantity being measured.  The equation for a population which follows the normal law of 
error is:

        (1)

is the fraction of the population which lies between the values x and  x+dx.  µ is the 

parameter which specifies the population mean.  σ is the standard deviation of the 
population and is a measure of the distribution's spread.  The normalization constant is  

A = 1
2πσ
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THE NORMAL ERROR CURVE:

Figure 1.  The normal error curve and its description.

 The quantity  σ in the above distribution is a measure of the population spread.  
The area under the curve from  x = µ – σ  to  x  =  µ + σ  is approximately 68% of the 
total area under the curve.  In the language of probability  this means that the probability 
for a given measurement of x to fall in this range is 0.68.  Sometimes this is spoken of as 
a "confidence interval."  In other words, we may expect values in this range with 68% 
confidence.  But this is only a “correctly  stated” confidence when either the σ is known to 
the experimenter beforehand or in the limit of a large N data set.  We’ll come back to this 
point shortly, but one should remark the estimation of errors is just  that, an estimation.  
Although we can define a programatic route to find an acceptable value for error, much is 
this is based on the philosophical aspect of statistics.

 σ is called the standard deviation of the distribution, and the 68% confidence 
interval is the mean plus or minus one standard deviation.  If we include the area under 
the curve between points two standard deviations from either side of the mean, we find 
the 95% of the total area is included; so we may call this the 95% confidence interval.  
Whenever the population parameter σ is known, we may calculate any  desired confidence 
interval by including that area under the curve and on either side of the mean which will 
give us the desired percentage of the total area.

 How do we estimate µ and σ from the data (assuming σ is not already known)?  
The data that one obtains in the experiment is assumed to be a finite, random sample 
drawn from this infinite population.  Assuming that we have a sample of size N, we can 
calculate two sample parameters:

         (2)
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           (3)

where X  is the sample mean,
 S is the sample standard deviation

 We must be careful to properly distinguish between the population parameters µ 
and σ and the sample parameters X and S.  In general, only  for very  large samples 

 will the sample and the population parameters coincide.  The task of statistical 

error analysis is to estimate µ and σ from the experimentally determined parameters X
and S.

 The primary difference between large sample techniques and small sample 
techniques is that the distinction between population parameters and sample parameters 
becomes more important as the size of the sample decreases.

 The result of our analysis will be a confidence interval for µ, the population mean.  
A confidence interval for µ is a range of values of x within which, we can say that the 
population mean µ lies with a specified confidence (50%, 80%, or whatever we wish).  A 
50% confidence interval that is from 48.8 to 50.2 cm for the length of a rod means the 
following.  If we repeated the measurement of the length of the rod n times as   we 

would expect the experimental mean to approach the true value; there is a 50% 
probability  that the experimental mean (as ) will fall between 48.8 and 50.2 cm.  

The experimenter must decide on the degree of confidence, i.e. the probability or 
percentage, he wishes to use.  This decision depends on the precision required for the 
application of the result.

 The size of the confidence interval, or the range of values of x, depends on the 
standard deviation of the sample, the size of the sample, and the desired degree of 
confidence.  The confidence interval is given by:

       (4)

The value of k depends on the sample size and the desired degree of confidence.  It can 
be calculated from Student's T distribution (see reference 1 or some of the others).  The 
following Table 1 gives values of k.
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 Table  I     Values of k for equation (4)

Sample
size

  k
   50%
interval

  k
   80%
interval

  k
   90%
interval

  k
   95%
interval

  k
   99%
interval

2 1.00 3.08 6.31 12.71 63.66
3 0.82 1.89 2.92   4.30   9.93
4 0.77 1.64 2.35   3.18   5.84
5 0.74 1.53 2.13   2.78   4.60
6 0.73 1.48 2.02   2.57   4.03
7 0.72 1.44 1.94   2.45   3.71
8 0.71 1.42 1.90   2.37   3.50
9 0.71 1.40 1.86   2.31   3.36

0.68 1.28 1.65   1.96   2.58

the result is generally written:

  QUANTITY  =   (xx% confidence)

Without  giving the statement of the degree of confidence, the result  is meaningless.  For 
the lab’s, let’s use a 95% (colloquially known as a 2-σ) confidence interval unless 
otherwise stated.  Often in physics literature, where it  is not stated, one assumes a 1-σ 
confidence interval (even when it is unclear whether the proper k-value has been 
applied).  Unfortunately, there is much sloppiness about this.  On the other hand, error 
assignment is an art, not necessarily rigorous math.

PROPAGATION OF ERRORS

 The techniques for calculating the confidence interval for an indirectly measured 
quantity depends on having the same degree of confidence for the directly  measured 
quantities.  This requires having the same sample size for all quantities if we use standard 
techniques for the propagation of errors.

  Let  y  =  F(x1, x2 ... xn)
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for small, independent variations of the xi we have:

  

consequently:

  

If the errors are strictly  random, independent, and symmetric with respect to sign, dxi dxj 

= 0  for i ≠ j (on the average) so:

  

then:

  

Thus for the sample parameter Sy we have:

  

If and only  if, we have the same confidence level for the given independent variables (xi), 
we can write:

     (5)

the confidence level for y will be the same as that of the independent variables

  

and the partial derivatives are evaluated using mean values.
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 What happens when we want to combine confidence intervals of a quantity 
measured on several occasions?  It’s a long story (see ref. 6), but the best answer is that 
one should merge the raw data sets and find a new confidence for the concatenated data.  

DISCUSSION AND EXAMPLES:

 Note that the comparison of an experimentally  determined mean with a published 
value in no way constitutes an error analysis.  Such a comparison, however, including 
consideration of the confidence interval for the experimental and published values, is 
very useful because it may indicate the presence of systematic error.  (In either the 
student's values, the published value, or both.)  This comparison may also indicate an 
error in the error analysis, a blunder, or that the equipment is not measuring what you 
think it is measuring.

 In many cases the application of error estimation techniques is not nearly  as clear 
cut as the above discussion indicates.  For example, consider the case of a voltage 
measurement with a voltmeter.  A number of readings would be taken and some variation 
noted.  The manufacturer will state that the accuracy  of the meter is 4% of the full-scale 
deflection.  How much of this 4% of full-scale error is of a random nature, and how much 
of it is systematic (due to scale error, for example) is not known.  In addition, the 
manufacturer probably  gives no information on the confidence level associated with the 
4% figure, and the time elapsed since the last meter calibration is obviously important.  
More information about these problems could be obtained by calibrating the meter, but 
time limitations generally prohibit this.

 Let us consider, for an example, the problem of measuring the length and area of a 
table using a meter stick.  Let x1 denote the meter stick graduation which lines up with 
one end of the table and x2 denote the meter stick graduation which lines up with the 
other end.  We estimate between the finest graduations (at 0.1 cm intervals) on the stick, 
i.e., we estimate to .01 cm.  The data is summarized in Table II.

 Let us work to an  80% confidence level.  From Table I we see  k = 1.4, so 
(actually  k = 1.42, but we've rounded off)

     [80% confidence]

or
      [80% confidence]
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 The above treatment has considered only random errors. We now must consider 
systematic and instrumental errors.  The instrumental error on a meter stick is usually 
about its least count.  (Least count ≡ smallest scale graduations, which is 0.1 cm in this 
case.)  However, we don't  really know what confidence level this represents.  Let us 
assume it is about  50%  confidence.

Table II

Measurement
No. x1 x2

1   9.01 66.24 57.2357.23 –.03   9 x 10
2   6.50 63.78 57.2857.28 +.02   4 x 10
3   3.25 60.54 57.2957.29 +.03   9 x 10
4   7.68 64.90 57.2257.22 –.04 16 x 10
5 8.76 66.04 57.2857.28 +.02   4 x 10
6   9.22 66.46 57.2457.24 –.02   4 x 10
7 8.11 65.36 57.2557.25 –.01   1 x 10
8 10.15 67.40 57.2557.25 –.01   1 x 10

SumSum 458.04 –.04 48 x 10

 Assuming sources of systematic error are small, i.e. meter stick expansion due to 
temperature is negligible (we could calculate this to prove it), the estimate for the table 
length is

  L  =  (57.26 ± .10) cm ,   [~50% confidence]

where we simply  used the least count as the error estimate.  Which is the best estimate of 
the error, the one based on instrumental error or the statistical one?  Answer: in this case 
of negligible systematic error, the statistical error is the best to use if one’s data set is 
large.  The above is a simple example for showing how to use error analysis techniques, 
pointing out the problem that is probably the most vexing in trying to estimate errors:  
One finds that one can rely  on techniques of statistics, rather than good judgment and 
experience, only when random errors are the dominant source of errors.
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 Let us assume that we measured the Width W of the table, and using similar 
techniques, found that:

  W = (40.79 ± .01)cm     [~50% confidence]

 We want to find the area of the table, using the formula  A  =  L • W.

 The first question is: does this theoretical equation fit  the system?  If the table has 
rounded corners or the length or width is not uniform, it  is obvious that it doesn't.  
Assuming that the formula is correct, we have, using equation (5), as an estimate:

  

  

      [~50% confidence]

The example that we will consider below is probably more meaningful.

 Let us now consider measuring the distance between two spectral lines on a glass 
photographic plate (glass plates are used in order that systematic errors due to distortion 
of the emulsion during development can be minimized).  We are interested in the distance 
between the centers of the lines, and we measure this distance with a microscope that is 
fitted with a stage that adjusts with a micrometer.  Let x1 be the micrometer reading when 
the first  line's center is under the cross hairs, and let x2 be the reading when the second 
line's center is under the cross hair.  The data is

Measurement
No. x1 x2

1 .275 .643 .368.368 +.004   16 x 10
2 .218 .593 .375.375 +.011 121 x 10
3 .210 .562 .352.352 –.012 144 x 10
4 .230 .591 .361.361 –.003     9 x 10

SumSum 1.456 0 290 x 10

The mean, using formula (2) is:
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Using formula (3) to find the standard deviation:

  

Let us work to a  95%  confidence level.  From Table I we have  k = 3.18.  Therefore:

      [95% confidence]

Assuming that systematic errors are negligible, and that  the instrumental error is  ~0.001 
cm, we see that our result is

        [95% confidence]
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