

Physics 398DLP
Design Like a Physicist

Fall 2018

George Gollin
University of Illinois at Urbana-Champaign

Unit 1: Organizations, Distributions, and Installations

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

2

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

3

Unit 1: Organizations, Distributions, and Installations

Goals this unit ... 3	
Introduction: project physics ... 4	

Prerequisites .. 5	
We are not building robots .. 5	
Some possible projects .. 6	
The style in which we will work ... 6	

Groups, projects, electronic diaries ... 7	
Distribution of stuff! ... 8	
Install the Arduino programming IDE .. 9	
Register a user account with Autodesk and download EAGLE 11	
Visit the TinkerCad web site ... 11	
Download and install the most recent version of Cura ... 13	
It’s time to build Version Zero of your data logging device. .. 14	

Accelerometer online! ... 15	
Temperature, relative humidity, etc. ... 15	

Volunteers needed ... 15	
Post-class assignment .. 16	

 Goals this unit

• Form up into research teams of two to four people and begin discussing which project
you’ll pursue. Schedule a time for the team’s weekly meeting with GG.

• Sign out the tools and hardware needed to build your devices.
• Install the Arduino programming IDE.
• Register an account with Autodesk, then install the EAGLE schematic capture/PCB IDE
• Log in to TinkerCad and make sure it recognizes your Autodesk account. Find a simple

design for something amusing on the TinkerCad site and export it to an STL file. (Hands-
on demo by GG. You will take notes as you follow along.)

• Download Cura 3.4 and have Cura generate a gcode file from your STL file.
• Plug the Arduino into a USB port on your laptop, find a demonstration program that will

blink its LED, upload the program and confirm that the LED really does blink. (Hands-on
demo by GG if desired.)

• Modify the blinking LED program to flash your first and last initials in Morse code.
• Get a soldering lesson from Todd Moore, an electrical engineer who is staffing the

undergraduate physics program. Solder pins onto the bottoms of some of your breakout
boards, including the ADXL326 accelerometer and BME680 temperature, etc. sensor.

• Install the power terminals and plastic feet onto your breadboard and duct-tape your
Arduino to the surface of your breadboard, but not on top of any of the interconnect holes.

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

4

• Install a BME680 on your breadboard, following the instructions on the Adafruit site, and
download the demonstration software to communicate with it. Make it report what it sees
in a serial monitor window. (Hands-on demo by GG if desired.)

• Do the same with the ADXL326 accelerometer.
• Select volunteers for the following reports: (1) introduction to the Arduino Mega 2560;

(2) how the BME680 T/P/H/VOC sensor works; (3) how a successive approximation
ADC works.

Introduction: project physics

Some years ago Carl Wieman won the Nobel Prize for creating a Bose-Einstein
condensate in a dilute cloud of 2,000 atoms. At the time he was a professor at the University of
Colorado, and had noticed that his physics students appeared to undergo a dramatic transition
during the first year of graduate school. As undergraduates they would attend lecture-based
classes and master course content by listening to their professors and slogging through weekly
problem sets. (You all know what this is like!) By the end of the semester, most of the class
would understand most of the material, but would find it difficult to integrate it into a coherent
picture of, say, classical electrodynamics. And a semester after a course had ended, most students
would not have retained their mastery of the topic. They would find it difficult to apply the
material in, say, a lab course. But after a year of graduate school—during which students would
work on difficult material without the distracting edge effects of 50-minute class periods—their
competence at navigating confusing subjects and difficult problems would increase enormously.

Wieman thought that teaching physics to undergraduates in a manner that more closely
resembled graduate education might be beneficial. He began to explore project-based courses, in
which students would learn physics by mastering what they needed to complete tasks that were
more like research projects than was usually true in undergraduate instruction. The results were
dramatic.

You’ve already had some experience with this instructional mode if you’ve taken Physics
298owl from me. It’s different from fighting to stay awake for an hour in lecture, then sifting
through the wreckage to extract what you need to do the homework assignment!

You will be performing the one-semester analog of a PhD research thesis: defining a
measurement to be performed, designing and building an instrument that might be capable of
recording data necessary for the measurement, testing your device, doing the field work to record
valid data, then analyzing the data to form supportable, reproducible conclusions. If all goes well,
you’ll find this so captivating that it will be hard to put your work aside to attend to your other
academic obligations. I suspect it is this strong engagement with a project that drives the
transition from an undergraduate level of skill to the expert mastery typical of graduate
researchers.

Your device will comprise an embedded processor—a Microchip Technology Inc.
ATmega2560 microcontroller on an Arduino Mega 2560 board—interfaced to a suite of sensors
built onto small “breakout” printed circuit boards. The Arduino’s USB interface will allow you

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

5

to download your (compiled) programs to the microcontroller and communicate with processor
through a serial interface.

After selecting your research partners and choosing a project, you’ll begin assembling
your instrument on a breadboard. You will develop the programs necessary to drive the various
sensors, integrate them into a data acquisition system of your own design, build a more robust
version of your device on a printed circuit board, 3D-print a case for it, and venture out into the
world to do field work and record data. You will analyze your data, draw (and justify)
conclusions, and document (and present) your findings. In the interest of efficiency, I encourage
you to use in your design as much public-domain material as you are able to find. There is, in
this course, no reason to reinvent the wheel.

Prerequisites
You must already know how to program. If you’ve learned to code in python or C/C++,

or Java, or some other language, you’ll do fine. CS 101, CS 125, and Physics 298owl are suitable
prerequisites. It’s also fine if you’ve learned on your own. If you’ve never programmed before,
consider delaying enrollment in Physics 398DLP until after you’ve done some coding.

You must have a basic working knowledge of introductory physics at the level of Physics
211 and Physics 212. More is better, though not necessary.

We are not building robots
Physics 398DLP is not a course in robot building. That would be an engineer thing, and

we are physicists, not engineers. We are going to tackle measurements that—if they prove
feasible—might make our corner of the world a little bit better. If we did build a robot, it would
be to accomplish a significant end, for example recognizing the onset of a potentially
catastrophic fall by an elderly person.

In Physics 398DLP you’ll construct a hand-held device loaded with inexpensive sensors
that are interrogated by a microcontroller—a small computer larded with additional features such
as timers and analog-to-digital converters—and write the data acquisition software necessary to
perform the measurements associated with your project. You’ll assemble a prototype on a
breadboard, construct a final (electrically equivalent) version on a printed circuit board, use a 3D
printer to build a case for it, do field work, then write analysis code to understand what
conclusions can be drawn from your data. You’ll write a report presenting your results and
justifying your conclusions, publish it to the web, and send it to the appropriate recipient—the
Illinois Department of Transportation, for example—and request a meeting to discuss your
findings.

We will loan you the parts and tools necessary to construct the prototype, and will expect
you to return these at the end of the course. But—at least in this initial offering of the course—
we will give you what you need to build the PCB version, and let you keep it at the end of the
term. (If you withdraw from the course we’ll want you to return everything we’ve given you.)

The intellectual tradition in physics is for researchers to build their own instruments
(buying off-the-shelf parts when available), ultimately creating sophisticated devices to perform

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

6

the measurements that will tell us about the physics we are researching. It is not like this in all
fields; my wife’s background is in bio-inorganic chemistry, and she would assemble reactors
from stock components, then run reaction products through spectrometers built by vendors like
Varian and Hitachi.

So you’ll be following the physics tradition, and you will be working in close
collaboration with one or two other students.

Some possible projects
Some of the projects are probably best imagined as feasibility studies that might inform

the design of a more definitive future measurement. We will see how it goes!
Here are some that I have in mind. You are free to suggest other possibilities, though I

reserve the right to veto anything that I feel is too difficult or too expensive.
• Noise mitigation in public spaces (e.g. the Radio Maria restaurant)
• Mapping track irregularities and anomalous accelerations on Amtrak trains
• Green house gas production by livestock
• The acoustic properties of the Krannert Center’s Great Hall as a function of position,

temperature, humidity, and barometric pressure
• Fall recognition and mitigation in the elderly
• (Potentially injury-producing) accelerations experienced by athletes and dancers
• Inexpensive range and force sensors for smart prosthetic limbs
• Mitigation of heat leakage through exterior walls by installation of spot insulation
• Vertical temperature profiles in large lecture halls
• Quantitative studies of how technicians “voice” instruments like pianos
• Mapping the temperature and humidity above a corn field (this might require a drone to

carry the data logger);
• Pressure gradients inside a residence as an indication of wind-induced air leakage;
• Noise and pressure profiles in the vicinity of wind turbines.

The style in which we will work
“DLP” stands for “Design Like a Physicist.” That’s a reasonably descriptive term for how

we will go about things, though it wasn’t my first choice for the three-character course identifier.
Here is what I mean. If you took Physics 298owl from me you’ll remember that I had you hand-
code a lot of algorithms—integrators, Fourier transforms—that could also be found in
professionally produced libraries. For pedagogical purposes, I had you reinventing a lot of
wheels.

That’s not how I’ve gone about my own research. If there’s a pre-coded numerical
algorithm that I can use, I’ll appropriate it, generally putting proper attribution to its source in
comments in my own code. If there’s a circuit I need that’s described in an engineering web site,
I’ll use it. Proper attribution can be placed on my schematic diagram. Sometimes it might be
difficult to publish the source attribution—the 3D STL files you’ll create for TinkerCad

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

7

projects—but do keep in your own notes information about where you have found useful
material.

You will keep track of your efforts in an electronic diary in which you describe your
work, useful revelations, and calculations. Put into it screen shots of useful stuff. I do not want
this to be anything fancy, but the diary should be cumulative, rather than something you close off
at the end of each class meeting. When your file becomes unwieldy, close it and start the next
“volume.” You should have your diary open while working on your project.

My preference is for you to use Microsoft Word, though if there’s another word
processing system you’d prefer to use, that’s fine. You will be uploading a PDF version of the
file to the course directory right before the beginning of each class. You should put notes about
techniques you find (or invent) into your diary so you can find them later.

You may be tempted to use LaTeX for your diary. But unless you are exceptionally facile
with LaTeX (and can already upload screen shots, for example), this will be a mistake. I am
going to be fairly hardnosed about this: making a lovely version of your diary at the cost of ten
minutes of extra time in class is unacceptable

We will be using several different IDEs—Integrated Development Environments—
during the semester. I expect you to install and use these in your work. If there are other tools
that you’d prefer to use, keep in mind that it will be hard for you to share material with other
members of your group. If you insist on staying with these, I am not going to be happy to find
you wasting time translating your work into a mutually acceptable format.

You will be working with things for which your understanding will often be a little blurry.
That’s OK, and in fact that’s the usual state of things in research. Taking the time to understand
every last detail about an IDE is a waste of time: it is better to focus your efforts on getting by,
on muddling through. You will get more done per week this way than you would if you spent the
time to understand everything completely. There is too much to do, and far more interesting
things to consider than the arcane details of SPI and I2C interfaces. You want to understand them
well enough to work with them, but not to write—without reference to external sources—the
definitive Handbuch des Was Auch Immer document.

I will expect you to have these windows open on your laptop in class at all times: (1) the
IDE for whatever you’re doing; (2) a browser window with which you can search for (and
download) useful things; (3) a word processor window in which you are updating your diary.

Groups, projects, electronic diaries

Please form up into research/project groups, discuss which project you might prefer to
undertake, and find a time that all members of your group can meet with me for 20 minutes. My
preference is sometime on Wednesday (10 am – 4 pm) or Thursday (10 am – 1 pm; 2 pm – 4 pm).

Open up your diary file, and add to your account of the afternoon’s activities as you work.

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

8

Distribution of stuff!

Here’s what I have for you. Once you have everything loaded into your plastic storage
box, please have one of your partners check your inventory.

part description quantity status

Sterilite plastic box your toy box! 1 on loan

22 gauge solid wire, multiple colors for breadboarding several feet yours to keep
wire strippers tool 1 on loan

tweezers (#422) tool 1 on loan

eye protection safety 1 on loan
breadboard prototyping 1 on loan

digital multimeter tool 1 on loan

SD/MicroSD 8 GB Memory Card memory 2 one is on loan
10 kΩ 1/4 W resistor (#2784), 25 per package 2 one is on loan

3 x 4 keypad (#1824) 4 x 3 keypad 2 one is on loan

470 Ω 1/4 W resistor (#2780), 25 per package 2 one is on loan

ADXL326 accelerometer (#1018) 3 axis 2 one is on loan
AA battery case (#3456) 5 x AA 2 one is on loan

BME 680 T/RH/P/VOC (#3660) temp, etc. 2 one is on loan

breadboard trim potentiometer 10 kΩ (#356) set LCD contrast 2 one is on loan
CR1220 backup batteries (#380) for RTC & GPS 4 two are on loan

DS3231 real time clock (#3013) clock 2 one is on loan

electret microphone with amplifier (#1063) rock n roll 2 one is on loan

INA219 battery voltage/current sensor (#904) battery monitor 2 one is on loan
MCP4725 DAC, 12-bit, I2C (#935) everyone needs a DAC 2 one is on loan

MicroSD card breakout (#254) memory breakout 2 one is on loan

Mini Metal Speaker w/ Wires - 8 ohm 0.5 W 2 one is on loan
MLX90614 IR sensor (#1748) MLX90614 2 one is on loan

On-Off-On-Off Alternating Pushbutton (#1684) battery/USB power 1 yours to keep

PAM8302 Audio Amplifier (#2130) audio 2 one is on loan

ultimate GPS breakout board (#746) NMEA 86 2 one is on loan
USB Cable - Standard A-B - 3 ft/1m (#62) laptop - Arduino 1 yours to keep

AA batteries, 100-pack 5 needed per device 10 five are on loan

16 x 2 LCD CFAH1602B-NGG-JTV display 2 one is on loan
0.1uF capacitors for 5V bypass 20

 Arduino Mega 2560 microcontroller 2 one is on loan

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

9

Install the Arduino programming IDE

Go to the Arduino website https://www.arduino.cc/ and navigate to
https://www.arduino.cc/en/Guide/ArduinoMega2560. Download and install the Arduino Desktop
IDE (Integrated Development Environment) on your laptop. Connect an Arduino to a USB port
in your laptop. The Arduino probably comes with a blink-an-LED program preloaded, so a
yellow LED near the USB connector might start blinking as soon as the board is powered.

You’ll need to go to the Tools ➙ Port menu to select which communication channel your
laptop will use to talk to the Arduino. While you’re at it, open a serial monitor window by
following Tools ➙ Serial Monitor. The Arduino will write information to this window as
instructed by the program it is running.

Please create a folder in which you will store your various Arduino programs. (For some
reason people call an Arduino program a sketch. I think that sounds silly.)

You can find Arduino tutorials and sample programs at
https://www.arduino.cc/en/Tutorial/BuiltInExamples. See also File ➙ Examples ➙ 01.Basics ➙
Blink for a ready-to-run program, which (after a few modifications) looks like this:

/*
 Blink: turns an LED on and off repeatedly.
 http://www.arduino.cc/en/Tutorial/Blink

 An Arduino Mega 2560 has an LED attached to digital pin 13.
 Technical Specs of your board Arduino can be found at:
 https://www.arduino.cc/en/Main/Products

 Authors: Scott Fitzgerald, Arturo Guadalupi, Colby Newman
*/

// global variables and constants go here. I’ll explain the use of const
// in class.

// length of delay before changing LED state, in milliseconds
const int the_delay = 1000;

// the setup function runs once when you press reset or power the board

void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever

void loop() {
 // turn the LED on (HIGH is the voltage level, predefined by the compiler)
 digitalWrite(LED_BUILTIN, HIGH);

 // wait for one second (1,000 milliseconds)
 delay(the_delay);

 // turn the LED off.
 digitalWrite(LED_BUILTIN, LOW);

 // wait for one second

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

10

 delay(the_delay);
}

Here’s how it looks in the IDE’s editor:

Click on the check mark to compile the program; click on the right arrow button to
compile it and download the executable to the Arduino.

Please open the Blink example, modify it as you are inclined, then save it to the folder
you’ve created to hold your programs. Compile and download it to confirm that it works.

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

11

Register a user account with Autodesk and download EAGLE

Go to
https://knowledge.autodesk.com/customer-service/account-management/education-

program/create-education-account/create-account-students-educators to register an account with
Autodesk as a student. You’ll have much better (free!) access to Autodesk’s tools this way than
you would if you registered a non-student account, even if it were free.

After you’ve registered, visit https://www.autodesk.com/education/free-software/eagle
and sign in. Follow the steps to download EAGLE, Autodesk’s schematic capture and printed
circuit board layout tool. We won’t actually do anything with EAGLE until next week. But
here’s how my schematic for a prototype data logger looks in EAGLE.

Visit the TinkerCad web site

Go to TinkerCad.com and log in using your Autodesk username and password. Search
for something interesting but small: “cute box with lid,” for example.

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

12

Click on the image, then select “Copy and Tinker.” Once the editor opens I’ll talk you
through some of the things you can do. Make very brief notes on any tricks that you find useful,
for later recall and reference.

We’ll try some of these actions:
• rotating point of view; zooming in and out
• grouping and ungrouping objects
• moving objects using the mouse and arrow keys
• rotating objects
• hiding/unhiding objects
• changing sizes while preserving (or not) aspect ratios
• making holes
• using (and changing) the grid
• aligning items
• quick example: how to make a lidless box
• adding text

After you’ve done as much nastiness to the thing you’ve been editing, make an STL
(stereo lithography) file by going to the export tab near the upper right side of the screen. We’ll
probably spend about 30 minutes on this today. Later, you’ll use TinkerCad to design the case
for your device.

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

13

Download and install the most recent version of Cura

The 3D printer in my office, and the army of printers in the Business School’s MakerLab
are built by Ultimaker B.V., a Dutch company. Cura is their software product that generates
gcode files (the inputs to a 3D printer) from STL files.

Download and install the latest version of Cura from Ultimaker’s web site: go to
https://ultimaker.com/en/products/ultimaker-cura-software. Open Cura and drop onto it the STL
file you’ve created with TinkerCad.

I’ll talk you through the process, along with a couple of settings you’ll want to impose.
Note that the program gives an estimate of how long your object will take to print.

A couple of technical issues to consider: (1) adhesion to the build surface; (2) support for
bridged features. I’ll explain what I mean in class.

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

14

It’s time to build Version Zero of your data logging device.

Let’s prep our breadboards. Please attach the connectors and rubber feet to your
breadboard. Please fasten an Arduino, still in its plastic carrier, to your breadboard. I recommend
duct tape (the baby sitter’s friend!); position the device to that it doesn’t cover any of the
breadboard’s plastic structures that are used to hold components.

Todd Moore, an electrical engineer who used to build complex devices for the High
Energy Physics Group but now staffs the undergraduate physics program, will run a soldering
clinic in class today. Please have Todd teach you how to solder! You’ll attach pin headers to a
few of the sensor breakout boards in your collection of goodies. I’d suggest you start with one of
your ADXL326 accelerometer and BME680 T/P/RH//VOC boards.

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

15

Accelerometer online!
Most of our breakout boards were built by Adafruit Industries, a wonderful provider of

small electronic packages intended largely for the hobbyist market. Go to the Adafruit site
https://www.adafruit.com/ and find the ADXL326 page that mentions some of the supporting
infrastructure available for you. (The URL is https://www.adafruit.com/product/1018.)

Install your ADXL326 breakout board onto the breadboard. Using sensible colors (red for
+5V, black for ground, other colors for signal lines), connect GND to one of the Arduino’s GND
lines and VIN to one of the Arduino’s 5V lines. Also connect the Xout, Yout, and Zout lines to
the Arduino’s analog inputs A0, A1, and A2. (See https://learn.adafruit.com/adafruit-analog-
accelerometer-breakouts/arduino-wiring.)

Download from Adafruit a sample program that communicates with the accelerometer.
(See https://learn.adafruit.com/adafruit-analog-accelerometer-breakouts/downloads or
https://learn.adafruit.com/pages/747/elements/1791783/download.) Compile the code, download
it to the Arduino, and run it!

Temperature, relative humidity, etc.
Install the BME680 onto your breadboard. See https://www.adafruit.com/product/3660

and links therein. You should power it using the Arduino’s +5V and GND lines. We’ll let the
device and the Arduino communicate using an I2C (I Two C) interface; set this up by connecting
the BME680’s SCK (serial clock) pin to the Arduino’s SCL output (pin 21). Also connect the
BME680’s SDI (serial data) to the Arduino’s SDA input (pin 20). You should leave unconnected
the BME680’s 3Vo, SDO, and CS pins.

You’ll need to install one of Adafruit’s libraries to drive the BME680. See
https://learn.adafruit.com/adafruit-bme680-humidity-temperature-barometic-pressure-voc-
gas/arduino-wiring-test and scroll down to the section titled “Install Adafruit_BME680 library.”
Follow the directions to install the library and upload to the Arduino the demonstration software.

Get it to run! You should find that the pressure transducer is so sensitive that it can tell
that you’ve lifted the board up from your worktable by a couple of feet just from the change in
atmospheric pressure.

Volunteers needed

Here are the topics for presentation net week:
• An introduction to the Arduino Mega 2560
• How the BME680 T/P/H/VOC sensor works
• How a successive approximation ADC works

I’d like a report to last at most ten minutes, be carried in at most ten PowerPoint slides, be
presented to the class by all the team members, and be suitable for upload to the course web site.
(That means proper attribution of sources, and so forth.) Keep in mind that your audience is other
students in the class, rather than a group of professional engineers.

Unit 1

Physics 398DLP, University of Illinois ©George Gollin, 2018

16

Post-class assignment

1. Formulate a plan of action with the members of your team. I want all of you to be
involved with all flavors of activity: writing Arduino code, generating schematics to represent
your devices, and so forth. But it is fine for one person to take the lead on, say, managing the
code that interrogates the GPS package. You will discuss this with me when your group and I
meet next week.

2. Finish whatever installations didn’t go smoothly during today’s class.
3. Install other sensors on your breadboard circuits, download demonstration software to

communicate with them, and see that the new code runs properly

