```
All materials are available from the top URL,
http://courses.physics.illinois.edu/phys326/
i.e. homework & discussion problems & solutions, lecture blackboards,
formula sheets, and INFO files.

The ITEM column contains these entries for week n:
nA      LECTURE #1 = Monday
nB      LECTURE #2 = Wednesday
nd      DISCUSSION = Wednesday
The READING item gives textbook sections for each week where the letters mean:
T       Taylor = the required textbook
M       Morin  = the recommended textbook [eBook @ UIUC Library,
off-campus access needs VPN in Tunnel All mode]

DATE    ITEM    CONTENT
============================================================================
+--------------------------------------------------------------+
|         COUPLED LINEAR OSCILLATORS                           |
+--------------------------------------------------------------+
T 1/16  1A      - coupled oscillators → eigenmodes
- weak-coupling demo
W 1/17  1d      - weak-coupling demo part 1: practicing our new techniques
R 1/18  1B      - massless couplings: springs in series & parallel
- math: proof of the det=0 technique
- normal coordinates: easy case with 1 <-> 2 symmetry
============================================================================
T 1/23  2A      - general formalism for small oscillations
W 1/24  2d      - weak-coupling demo part 2: beats
R 1/25  2B      - "reading" the M and K matrices from T & U
- good technique: the double pendulum
============================================================================
T 1/30  3A      - DC modes
- transverse oscillations of taut, loaded string
W 1/31  3d      - DC modes and the vibrations of the C02 molecule
R 2/1   3B      - catalogue of modes in 3D
- math: linear vector spaces & inner product spaces
- normal modes as a linear vector space: statement
============================================================================
T 2/6   4A      - normal modes as a linear vector space: proof
- normal coordinates: general case
W 2/7   4d      - degenerate eigenvalues
R 2/8   4B      - transformation rules for vectors and tensors
- geometry of normal-coordinate space → dual basis
============================================================================
T 2/13  5A      - diagonalization of M and K matrices
- example 1: working in normal-coordinate space
+--------------------------------------------------------------+
|         2-BODY CENTRAL FORCE SYSTEMS & SCATTERING            |
+--------------------------------------------------------------+
W 2/14  5d      - reduction to 1-body problem
- calculating apsidal points
R 2/15  5B      - [end of LinOsc] example 2: driven coupled oscillators
============================================================================
T 2/20  6A      - bounded and unbounded orbits
- path equation : derivation
- path equation : example
W 2/21  6d      - Kepler orbit practice
R 2/22  6B      - conic sections
- bounded Kepler orbits & derivation of Kepler's Laws
- motion of the individual particles ("wobble"/recoil)
============================================================================
T 2/27  7A      - scattering : capture cross sections
- scattering : solid angle
- scattering : differential cross sections
- scattering : unbounded Kepler orbits & repulsive forces
- scattering : hyperbola anatomy 1

W 2/28  7d      - scattering : captured paths
- Hohmann transfer orbits
R 3/1   7B      <<<<<   MIDTERM 1 : LINEAR OSCILLATIONS   >>>>>
============================================================================
8read  T:10.2-5; M:9.1-4  (Morin is particularly good on this topic)
T 3/6   8A      - scattering : hyperbola anatomy 2
- scattering : luminosity & rate
+--------------------------------------------------------------+
|         THE INERTIA TENSOR & EULER'S EQUATIONS               |
+--------------------------------------------------------------+
- the inertia tensor
W 3/7   8d      - scattering : Rutherford cross section
R 3/8   8B      - principal axes of rotation
- parallel-axis theorem & KE formula with inertia tensor
- example: obtaining torque given constant rotation (and v.v.)
============================================================================
T 3/13  9A      - tons of excellent questions :-)
- example: obtaining motion immediately after an impulse
W 3/14  9d      - inertia tensor: symmetries
- inertia tensor: degenerate eigenvalues
R 3/15  9B      - discussion of reference points
- Euler's equations
============================================================================
3/18-3/24            SPRING BREAK WOOO!!!
============================================================================
T 3/27  10A     - rotational stability
- free symmetric top (FST) part 1
W 3/28  10d     - rotational trajectories
- small oscillations from Euler's equations
R 3/29  10B     - FST part 2
============================================================================
T 4/3   11A     - addition of angular velocities
- Euler angles 1
W 4/4   11d     - Euler angle practice
- spinning top in gravity
+--------------------------------------------------------------+
|         INTRODUCTION TO GENERAL RELATIVITY                   |
+--------------------------------------------------------------+
11read  free chapters from Taylor & Wheeler
R 4/5   11B     - Chandler wobble
- GR: the equivalence principle
- GR: the bending of light
- GR: gravitational redshift & time-dilation
- GR: curved space-time
============================================================================
T 4/10  12A     - GR: the Schwarzschild metric
W 4/11  12d     - GR: the GPS system
R 4/12  12B     - GR: natural units
- GR: the metric tensor
- GR: local flatness
- GR: recovering special relativity
- GR: local time measurements
============================================================================
T 4/17  13A     - GR: Schwarzschild coordinates
- GR: local distance measurements
- GR: the Schwarzschild Radius & black holes
- GR: the Principle of Maximal Aging
- GR: the GR Lagrangian
- GR: constants of motion

W 4/18  13d     - GR: curvature and reduced circumference
R 4/19  13B     <<<<<   MIDTERM 2 = central forces & rotations     >>>>>
============================================================================
T 4/24  14A     - transverse waves on a string: discrete → continuous
- the 3D wave equation
- waves on a finite string: boundary conditions & Fourier series
W 4/25  14d     - wave practice
R 4/26  14B     - start continuum mechanics in solids
- volume and surface forces
- elastic moduli, stress, and strain
- the stress tensor
============================================================================
T 5/1   15A     - tension in massive strings
- the strain tensor
- generalized Hooke's Law
- the Maxwell stress tensor from E&M

W 5/2   15d     - TBA
============================================================================

```