Physics 326 – Homework #1
due in course homework box by Fri 1 pm

All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points for poorly written solutions or incorrect reasoning. Answers given without explanation will not be graded: our master rule for homework and exams is NO WORK = NO POINTS. However you may always use any relation on the 3D-calculus and 1D-math formula sheets without proof; both are posted in the same place you found this homework. Finally please write your NAME and DISCUSSION SECTION on your solutions.

Problem 1: Ignoring the Unstretched Length

In lecture, we analyzed the 2-masses-3-springs system shown in the figure, using as our coordinates the carts’ displacements from equilibrium, x_1 and x_2. When we set up the equations of motion, we made a simplifying assumption without discussing it: we assumed that when the system was at equilibrium ($x_1 = x_2 = 0$), the springs were at their unstretched lengths l_1, l_2, l_3. This assumption makes it a lot simpler to write the equations of motion! For example, we can immediately write the force of spring 1 on cart 1 as $k_1 x_1$ instead of having to write it as $k_1 (x_1 - l_1)$; if we go the Lagrangian route instead, the potential energy of spring 1 is $\frac{1}{2} k_1 x_1^2$ instead of $\frac{1}{2} k_1 (x_1 - l_1)^2$. As it turns out, our simplifying assumption is fully justified. (Sigh of relief!) We must now prove that this is the case, so that we know when we can use it in future!

(a) Let L_1, L_2, and L_3 be the lengths of the springs when the system is in equilibrium ($x_1 = x_2 = 0$). The assumption made in lecture and in the textbook is that these equilibrium lengths are the same as the springs’ unstretched lengths, i.e. that $L_i = l_i$. This is a most unlikely assumption ... but as we will see in part (b), it is not necessary! Use a mental image of the system in equilibrium to write down the two relations that must hold between the equilibrium lengths L_i and unstretched lengths l_i. (Hint: you should get one relation for each mass.)

(b) Write down the “full” equations of motion for mass m_1 and mass m_2, this time not using the assumption that $L_i = l_i$ for any spring. Finally, use your part (a) conditions to show that these equations of motion are exactly the same as those you obtain by assuming $L_i = l_i$ for all springs. Very cool!

Problem 2: 2 Masses 3 Springs

In the 2-masses-3-springs setup shown in the figure above, consider the case when the masses are equal, $m_1 = m_2 = m$, and the spring constants have these values: $(k_1, k_2, k_3) = (k, 2k, 4k)$ where k is a constant.

• Find and briefly describe the two normal mode solutions for $x_1(t)$ and $x_2(t)$.
• Write down the general solution for $x_1(t)$ and $x_2(t)$.

Problem 3: 2 Masses 2 Springs

Consider the 2-masses-2-springs set shown in the figure at right, in the special case that the masses are equal, $m_1 = m_2 = m$, and the spring constants are $(k_1, k_2) = (3k, 2k)$.

(a) Find and describe the two normal mode solutions for $x_1(t)$ and $x_2(t)$, where x_1 and x_2 as usual refer to the carts’ displacements from their equilibrium positions.
(b) Write down the general solution for $x_1(t)$ and $x_2(t)$.

(c), (d) Under construction ...
Problem 4: Enter the Pendula! (at small angles, of course)

Consider two identical plane pendulums … or “pendula” if you are over-educated in the humanities. Each has length \(d\) and mass \(m\), and they are “simple pendula”, meaning that all their mass is concentrated in a small “bob” at the end. (Jargon note: if the word “pendulum” appears without further qualification, it is generally implied that it is a simple pendulum.)

Simple though they may be, these pendula are arranged in an interesting configuration: as shown in the figure, their bobs are connected by a massless spring of spring constant \(k\). The natural (=unstretched) length of the spring is equal to the distance between the two supports, so the equilibrium position is at \(\phi_1 = \phi_2 = 0\), with the two pendula vertical.

(a) Use the Lagrangian procedure to obtain the equations of motion for the coordinates \(\phi_1\) and \(\phi_2\) in the approximation that these angles remain small at all times.

[Taylor’s hint: this means that the extension of the spring is well approximated by \(d(\phi_2 - \phi_1)\).]

(b) • Find and describe the normal modes for the small oscillations of these coupled pendula.
 • Write down the general solution for \(\phi_1(t)\) and \(\phi_2(t)\) in the small-oscillation approximation.

Problem 5: A Triangle of Springs

Two equal masses \(m\) are constrained to move without friction, one on the positive \(x\) axis and the other on the positive \(y\) axis. They are attached to two identical springs of spring constant \(k\) whose other ends are attached to the origin. In addition, the two masses are connected to each other by a third spring of force constant \(k'\). The springs are chosen so that the system is in equilibrium with all three springs relaxed, i.e. with their lengths equal to their unstretched lengths. However, the unstretched length does make an appearance in this problem: you must not ignore it here as the geometry in this problem is more complex than the 1D chain-of-springs geometry of problems 1 - 3. (This illustrates how careful you must be with the simplifying assumption you explored in problem 1 ➔ it is not always possible to completely ignore the unstretched spring lengths!)

• Find and describe the normal modes of the two masses in the approximation that the masses only make small displacements from equilibrium.
• Write down the general small-oscillation solution for the positions \(x(t)\) and \(y(t)\) of the two masses.