Problem 1: Drag Coupling

From PHYS 325 and MATH 285 you know how to solve a damped oscillator with one degree of freedom. A quick recap: The EOM for such an oscillator is \(\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0 \), with \(\beta \) being a damping constant and \(\omega_0 \) being the oscillator’s undamped frequency. To solve, you guess the solution form \(\tilde{x}(t) = \tilde{A} e^{\tilde{\omega}t} \), i.e. an exponential where the frequency \(\tilde{\omega} \) in the exponent and/or the amplitude \(\tilde{A} \) may be complex numbers. When you plug that form into the EOM and solve for \(\tilde{\omega} \), you will get quite different results if the oscillator is weakly damped (\(\beta < \omega_0 \), which produces damped oscillations) or strongly damped (\(\beta > \omega_0 \), which doesn’t oscillate at all). You can review the blackboards from PHYS 325 lecture 14B for a reminder; they are available in a folder on the PHYS 326 website.

In this problem, we tackle a coupled oscillator (two degrees of freedom) with damping involved. As you will see, the matrix notation we have been using to write and solve the EOMs for coupled linear oscillators can be readily extended to a damped system, you just have to use complex exponentials instead of cosines for your normal-form solutions. No problem! ☺

The two carts in the figure above have equal masses \(m \). They are joined by identical but separate springs of force constant \(k \) to separate walls. Cart 2 rides in cart 1 as shows, and cart 1 is filled with molasses, whose viscous drag supplies the coupling between the two carts. The drag force has magnitude \(\beta mv \) where \(v \) is the relative velocity of the two carts.

(a) Write down the equations of motion of the two carts using as coordinates \(x_1 \) and \(x_2 \), the displacements of the carts to the right of their equilibrium positions. Show that the EOM can be written in matrix form as

\[
\begin{bmatrix}
1 & 0 \\
D & \omega_0^2
\end{bmatrix} \begin{bmatrix}
\ddot{x}_1 \\
\ddot{x}_2
\end{bmatrix} = 0,
\]

where \(\ddot{x} \) is the column vector made up of \(x_1 \) and \(x_2 \), \(\omega_0 \equiv \sqrt{k/m} \), \(1 \) is the unit matrix, and \(D \) is a certain 2×2 square matrix for you to determine.

(b) The next step is to “guess the solution form”. Let’s try normal mode form, but with a slight variation. Normal mode form means a solution where all the coordinates are oscillating at the same frequency and the same phase. This system has damping, however, so its oscillations will decay with time. That suggests a solution form \(\tilde{x}(t) = \tilde{A} e^{\tilde{\omega}t} \) where we hypothesize a common frequency \(\tilde{\omega} \) that is complex instead of the usual purely-imaginary exponent \(i\omega \) that you get for an undamped oscillator system. Assuming that the drag force is weak (\(\beta < \omega_0 \)), show that you do get two solutions of this form with \(\tilde{\omega} = i\omega_0 \) or \(\tilde{\omega} = -\beta + i\sqrt{\omega_0^2 - \beta^2} \).

HINT: The determinant does not require much algebra at all … \(a^2 - b^2 = (a+b)(a-b) \) …

NOTE: You may be wondering what happened to the minus option in the \(\tilde{\omega} = \pm i\omega_0 \) and \(\tilde{\omega} = -\beta \pm i\sqrt{\omega_0^2 - \beta^2} \) solutions that you probably obtained. Answer: it doesn’t matter which sign you choose in these two cases … but why? That is for you to figure out!

(c) Describe the motions corresponding to each normal mode, using words or sketches. Also explain physically why one of the modes is damped but the other is not.
Problem 2 : Triple Pendulum (a classic qual-exam problem)

A triple pendulum consists of masses βm, m, and m suspended to each other in a line by three massless rods of length a. The whole thing is suspended from a stationary pivot, as shown in the figure. Throughout this problem, you may assume that the displacements of the masses from equilibrium are small.

(a) Find the value of β such that one of the normal frequencies of this system will equal the frequency of a simple pendulum of length $a/2$ and mass m.

(b) Find the mode corresponding to this frequency and sketch it.

Problem 3 : Bead on a Swinging Hoop

A bead of mass m is threaded on a frictionless circular wire hoop of radius R and the same mass m as the hoop. The hoop is suspended at the point A and is free to swing in its own vertical plane as shown in the figure.

(a) Using the angles ϕ_1 and ϕ_2 as generalized coordinates, solve for the normal frequencies of small oscillations, and find and describe (e.g. with sketches) the motion in the corresponding normal modes.

(b) Find two sets of initial conditions that allow the system to oscillate in each of its two normal modes.

Problem 4 : Pendulum on a Cart

A simple pendulum (mass M and length L) is suspended from a cart of mass m that moves freely along a horizontal track. You will find it helpful to introduce the parameters $\eta \equiv m / M$ and $\omega_0 = \sqrt{g / L}$.

(a) What are the normal frequencies of small oscillations of the system?

(b) Find and describe (e.g. with sketches) the corresponding normal modes of the system. If you are doing this before the lecture on DC modes, please read the brief Appendix B.

(c) The cart / pendulum system is held at rest at $x = 0$ and $\phi = \phi_0$, where ϕ_0 is small. At time $t = 0$, the system is released from rest. Write down the subsequent motion $x(t)$ of the cart and $\phi(t)$ of the pendulum.
Appendix A : Getting the M and K matrices from T and U

In our development of the general theory of small oscillations, we found the following: if

- all the forces acting on your system can be described by a position-dependent potential \(U(q) \), and
- you are using natural coordinates \(q_i \) (i.e. no time-dependent constraints),

then the EOMs, \(T \), and \(U \) all take the standard forms

\[
\mathbf{M} \ddot{\mathbf{q}} = -\mathbf{K} \mathbf{q}, \quad T = \frac{1}{2} M_{ij} \dot{q}_i \dot{q}_j, \quad U = \frac{1}{2} K_{ij} q_i q_j \quad \text{where} \quad \mathbf{M}_{ij} = \left. \frac{\partial^2 T}{\partial q_i \partial \dot{q}_j} \right|_{\mathbf{q}, \dot{\mathbf{q}}=0} \quad \text{and} \quad \mathbf{K}_{ij} = \left. \frac{\partial^2 U}{\partial q_i \partial q_j} \right|_{\mathbf{q}, \dot{\mathbf{q}}=0}
\]

when approximated to leading non-vanishing order in the small quantities \(q_i, \dot{q}_i \) (i.e. when deviations from equilibrium are arbitrarily small). Let’s call this the **standard form** of small-oscillation problems. For standard form problems, we can now greatly simplify step 1 in our solution procedure:

1. Find the EOMs, put in matrix form, and substitute a normal-mode solution \(\mathbf{\bar{q}}(t) = \mathbf{\bar{A}}_\omega \cos(\omega t - \delta_\omega) \).
2. Solve for the eigenfrequencies \(\omega \) using “determinant = 0” for linear homogeneous equations.
3. Solve for the corresponding eigenvectors \(\mathbf{\bar{A}}_\omega \).
4. Write down the general solution of the system by superposing all the normal modes.

For standard form problems, we showed that step 1 will always give these equations:

EOMs are \(\mathbf{M} \ddot{\mathbf{q}} = -\mathbf{K} \mathbf{q} \rightarrow \) postulate \(\mathbf{\bar{q}}(t) = \mathbf{\bar{A}}_\omega \cos(\omega t - \delta_\omega) \rightarrow \) solve \((\mathbf{M} \omega^2 - \mathbf{K}) \mathbf{\bar{A}}_\omega = 0 \)

Thus, all we have to do in step 1 is find the matrices \(\mathbf{M} \) and \(\mathbf{K} \). In our examples so far, we found the equations of motion and matched them to \(\mathbf{M} \ddot{\mathbf{q}} = -\mathbf{K} \mathbf{q} \) to determine \(\mathbf{M} \) and \(\mathbf{K} \). Well, with our new relations, we don’t have to find the EOMs at all,

\(\Rightarrow \) we can obtain the \(\mathbf{M} \) and \(\mathbf{K} \) matrices directly from \(T \) and \(U \) approximated to 2nd order in \(q_i, \dot{q}_i \).

Usually this is much faster than finding the EOMs. For example, for two degrees of freedom, you can read off from \(U \) the entries of the \(\mathbf{K} \) matrix in either of these ways:

approximate \(U \) to 2nd order: \(U \approx \frac{1}{2} K_{ij} q_i q_j \rightarrow 2U = K_{11} q_1^2 + K_{22} q_2^2 + K_{12} q_1 q_2 + K_{21} q_2 q_1 \)

\[
\Rightarrow U = K_{11} q_1^2 + K_{22} q_2^2 + (K_{12} + K_{21}) q_1 q_2
\]

OR \(\mathbf{K}_{ij} = \left. \frac{\partial^2 U}{\partial q_i \partial q_j} \right|_{\mathbf{q}, \dot{\mathbf{q}}=0} \)

You can either approximate \(U \) to second order in \(q_i \) and read off the entries of \(K \) from the various terms (left-hand side) OR you can take the partial derivatives of \(U \) and evaluate them at equilibrium (right-hand side). You obtain the \(\mathbf{M} \) matrix from \(T \) in the same way using the corresponding standard form formulae above.

Appendix B : DC Modes

If you find that one of the eigenfrequencies, \(\omega \), of your system is zero then your system has a **zero-frequency mode**, a.k.a. a DC mode. The normal-mode solution form is \(q_i(t) = A_i \cos(\omega t - \delta) \); if you plug \(\omega = 0 \) into that, you get a solution of all constants: \(q_i(t) = A_i \cos(\delta) = B_i \). That’s not enough free parameters: we need two free parameters per coordinate, and we only have one! What to do? \(\Rightarrow \) Go back to one step after we postulated normal mode form, when we wrote down \(\ddot{q} = -\omega^2 \dot{q} \). If you have a DC mode, then \(\ddot{q} = 0 \rightarrow \) none of the coordinates are accelerating at all in this mode. Well we know the solution of \(\ddot{q}_i = 0 \rightarrow q_i(t) = A_i + B_i t \).

That’s got the two free parameters we need, great. That’s the solution form you use for a DC mode.