1. **30 points** A satellite is in a circular orbit (labeled 1) around the earth (mass M) at radius R with speed $v_{\text{initial}} = \sqrt{GM/R}$. We wish it to climb to a higher circular orbit, at radius $R' > R$ with speed $v_{\text{final}} = \sqrt{GM/R'}$. We will do this by means of an elliptical Hohmann transfer orbit. It applies an impulse (with a change of speed Δv) at time zero, which puts it into the transfer orbit (labeled 2). On arriving at the new distance R' it is at the apogee of the transfer orbit. It then applies an additional impulse $\Delta v'$, increasing its speed again, to enter the final circular orbit (labeled 3).

What is the angular momentum ℓ and energy e (per mass) of the transfer orbit? [This is readily found in terms of R and R', and knowing the transfer orbit's formula for r(\phi); see below.]

What are the needed instantaneous changes of velocity Δv and $\Delta v'$?

All answers should be in terms of M, G, R and R'.

To answer these questions you may find it useful to recall the formula

$$r(\phi) = (\ell^2/GM) \left[1 + \left(1 + \frac{2e}{\ell^2/GM^2} \right)^{1/2} \cos(\phi) \right]^{-1} = a / \left[1 + e \cos \phi \right]$$

Hint: what are a and e in terms of R and R'? Note that e must be negative.

2. **15 points** Two black holes, of masses 2 M_{solar} and 1 M_{solar} respectively, are in circular orbits around each other. Their separation is $d = 10,000$ km. They each have a speed relative to the joint center of mass (indicated in the figure by a *).

- What is the ratio of their speeds relative to the center of mass? Which is moving faster?
 (hint: think about total system momentum)

- What is the period of their orbit in seconds?

- Where is each black hole at a time 1/4 period later than the time in the figure? Indicate these positions in the figure.

 P.S. $M_{\odot} = 2 \times 10^{30}$ kg $G = 6.67 \times 10^{-11}$ N m2/kg2.

3. **15 points** A spaceship is in a circular orbit above a black hole of one solar mass. The orbit has a radius D.
- In terms of G, M_{solar} and D, what is the spaceship's acceleration at this moment?
- What is the period P of its orbit?
- Evaluate P numerically (you may use a calculator) for D = 5000 km, $M_{\odot} = 2 \times 10^{30}$ kg; $G = 6.67 \times 10^{-11}$ N m2/kg2.

- What is the tidal effect on a particle floating in the spaceship? I.e., given a particle a distance h to the right of the spaceship's center of mass (with h << D), what is the particle's acceleration relative to the ship's center of mass? Evaluate this numerically (you may use a calculator) for D = 5000 km, $h = 1$ meter, $M_{\odot} = 2 \times 10^{30}$ kg; $G = 6.67 \times 10^{-11}$ N m2/kg2.
