Phys 325 Homework 1A
Name: __________________________

Due: Thursday Jan 24, 2019 by 1pm (lecture or 325 box)

1. **(10 points)** A force \(F(t) = 20 t^3 \) acts on a particle of unit mass. At time \(t = 2 \) the particle is at \(x = 3 \) with velocity 4.
 - What is \(x(t) \) for later times \(t \)?

2. **(10 points)** A particle of mass \(m \) is observed to be moving along the \(x \)-axis with a velocity that varies with the displacement \(x \) according to \(v(x) = V_0 \exp(\beta x) \), where \(\beta \) and \(V_0 \) are constants.
 - What are the physical dimensions of \(V_0 \) and \(\beta \)?
 - Find the force \(F(x) \) acting on the particle as a function of \(x \) and the given constants.
 - Check your expression for \(F(x) \) for dimensional consistency.

3. **(15 points)** A particle of mass \(m \) moves in 1-d in a potential \(U(x) = A/x^2 - B/x \) with \(A \) and \(B \) positive.
 - Sketch a plot of \(U(x) \) for the case \(A=B=1 \).
 - In terms of the assumed positive \(A \) and \(B \), construct the corresponding force \(F(x) = -dU/dx \). Sketch \(F(x) \) for the case \(A=B=1 \).
 - In terms of the assumed positive \(A \) and \(B \), find the equilibrium point \(x_{eq} \) and determine (by examining \(U'' \) there) whether or not motion near that point is stable.
 - The particle starts at position \(x_o > 0 \) and speed \(v_o \). Find the inequality relating \(A, B, m, x_o \) and \(v_o \) necessary and sufficient to assure that the particle's subsequent motion is bounded and periodic.

4. **(15 points)** A particle of mass \(m \) moves in 1-d in a conservative force field with force \(F(x) = -Ax \exp(x^2/a^2) \) where \(a \) has units of length.
 - What is the associated \(U(x) \)?
 - Show that \(x=0 \) is an equilibrium point.
 - Find the period \(2\pi/\omega \) of oscillations assuming that deviations from equilibrium are small (\(|x| \ll a \)). You may wish to use the methods of p 13-16 of the lecture notes.