1. A particle of mass \(m \) moves in 2-d subject to a force field \(\mathbf{F} = -A \exp(-\alpha r) \hat{r} \). Thus it is attracted to the origin with a strength that diminishes with distance.
 Why do we call it a central force?
 Why do we call it conservative?

2. Give an expression for the potential energy as a function of position, \(U(r) \) such that \(\vec{F} = -\vec{\nabla} U \)
 Choose the constant of integration such that \(U = 0 \) at \(r=\infty \).

 We write \(\mathbf{v} \) in polar coordinates: \(\mathbf{v} = \dot{r} \hat{r} + r \dot{\phi} \hat{\phi} \)

3. Give an expression for the total energy \(E \) (as a function of \(\dot{r} \) and \(\dot{\phi} \) and \(r \))

4. Use our knowledge that the angular momentum \(\mathbf{L} = \mathbf{r} \times \mathbf{p} \) with magnitude \(L = m r^2 \frac{d\phi}{dt} \) is a constant (which follows from \(F_\phi = 0 = m \{ r \ddot{\phi} + 2r \dot{\phi} \} \)) and eliminate \(\frac{d\phi}{dt} \) from \(E \) to find an expression for \(E \) as a function of \(\dot{r} \) and \(r \) and \(L \).

5. For purposes of illustration, let us henceforth take \(m=1, \alpha = 1, A = 3, L = 1 \). Sketch the effective potential \(U_{\text{eff}}(r) \) that appears in \(E = \frac{1}{2} m \dot{r}^2 + U_{\text{eff}}(r) \). (A graphing calculator is helpful here.)
 For \(E=-0.25 \), identify the turning points, where \(\dot{r} = 0 \), in your sketch.
 Find the energy \(E \) of a circular orbit with unit angular momentum \(L \), i.e., one that has \(r=\text{constant} \).

6. The particle starts at \(x=1, y = 0, \frac{dx}{dt} = 0.5, \frac{dy}{dt} = 1 \). Construct \(\mathbf{L} = \mathbf{r} \times m \mathbf{v} \) and show this has \(L = 1 \). Compute the total energy and show that it is negative, and that therefore the ensuing trajectory is bound, i.e., that \(r \) never goes to \(\infty \).

7. Find the maximum \(r \) and the minimum \(r \) of this orbit (you will need to solve a transcendental algebraic equation numerically, a graphing calculator provides an easy way to do this.)

8. Now let us reconsider the above, but with a weaker attractive force: \(A = \frac{1}{2} \). Still take \(m=1, \alpha = 1 \). Take the same initial conditions: \(x=1, y = 0, \frac{dx}{dt} = 0.5, \frac{dy}{dt} = 1 \). What is \(L \)? What is \(E \)? Show that the ensuing trajectory is not bound; it goes to \(\infty \).