INTERFERENCE

\[\delta = r_1 - r_2 = d \sin \theta. \]
Equation for path length difference. \(r_1 - r_2 \) is completely general. Use \(\delta \sin \theta \) only when the two sources are far away from the observation point.

\[\frac{\phi}{2\pi} = \frac{\delta}{\lambda} \]
is completely general whenever you have waves from two sources interfering.

\[\frac{\phi}{2\pi} = \frac{d \sin \theta}{\lambda} = \frac{d \theta}{\lambda} = \frac{d}{\lambda} \frac{y}{L} \]
applies to interference from multiple slits. \(\phi \) is the phase difference between waves from successive slits at the point of observation. \(d \) is the slit separation. \(\lambda \) is the wavelength. \(\theta \) is the position on the screen measured as an angle. \(y \) is the position on the screen measured as a distance. \(L \) is the distance from the slits to the screen.

\[\sin \theta = \pm \frac{n \lambda}{d} \]
applies to interference from multiple slits. \(\theta \) is the angular position of the \(n \)th order peak. Note that: \(\sin \theta = \theta = \pm \frac{n \lambda}{d} \) for small angles and that \(\Delta \theta = \frac{\lambda}{d} \) where \(\Delta \theta \) is the angular separation between successive peaks.

\[I = 4I_0 \cos^2 \left(\frac{\phi}{2} \right) \]
applies only to the superposition of 2 waves.

DIFFRACTION

\[\delta_s = a \sin \theta \]
applies to diffraction. \(\delta_s \) is the path length difference between the top and bottom of the slit of width \(a \).

\[\beta = \ldots \]
applies to diffraction. Here \(\beta \) is the phase difference between the waves coming from the top and the bottom of the slit.

\[\sin \theta = \pm \frac{m \lambda}{a} \]
applies to diffraction. \(\theta \) is the angular position of the \(m \)th order \textbf{minimum} caused by diffraction.
INTERFERENCE PLUS DIFFRACTION

\[I_i = I_0 \left\{ \frac{\sin(\beta / 2)}{\beta / 2} \right\}^2 \] gives the shape of the diffraction pattern (the envelope).

\[I_N = I_1 \left\{ \frac{\sin(N\phi / 2)}{\sin(\phi / 2)} \right\}^2 \] gives the shape of the interference pattern (the peaks). \(N \) is the number of slits.

Note that: \[I = I_0 \left\{ \frac{\sin(\beta / 2)}{\beta / 2} \right\} \left\{ \frac{\sin(N\phi / 2)}{\sin(\phi / 2)} \right\}^2 \] gives the total intensity pattern.

RESOLUTION OF LENSES, GRATINGS, ETC

\[\theta_0 = \frac{\lambda}{a} \] is the minimum angular separation of two objects resolvable through a 1D slit of width \(a \).

\[\theta_0 = 1.22 \frac{\lambda}{D} \] is the minimum angular separation of two objects resolvable through a lens or circular aperture of diameter \(D \). \(\alpha \) can also be taken to mean the minimum resolvable angle.

\[\frac{\Delta \lambda_{\text{min}}}{\lambda} = \frac{1}{Nm} \] applies to resolution of two interference peaks through a diffraction grating. \(\Delta \lambda \) is the minimum resolvable wavelength difference. \(N \) is the number of slits. \(m \) is the order of the peak.
ENERGY & MOMENTUM

\[KE_{\text{max}} = eV_{\text{stop}} = hf - \Phi = h(f - f_0) \] applies to the photoelectric effect. The maximum kinetic electrons coming off the metal is \(KE_{\text{max}} \). \(V_{\text{stop}} \) is the stopping voltage. \(hf \) is the energy of the photon. \(\Phi \) is the work function of the metal.

Note: Multiplying any voltage \(V \) by electric charge \(e \) gives energy in eV numerically equal to the voltage.

For example: If \(V = 69 \text{ volts} \), then \(eV = e(69 \text{ volts}) = 69 \text{ eV} \).

\[KE = \frac{1}{2} m v^2 = \frac{b^2}{2m} \] gives the kinetic energy for any massive particle. Note that a photon is not a massive particle.

\[E = pc = hf = \frac{hc}{\lambda} = \frac{1240 \text{ eV} \cdot \text{nm}}{\lambda} \] gives the energy of a photon. For \(\frac{1240 \text{ eV} \cdot \text{nm}}{\lambda} \) use nanometers for wavelength.

\(\lambda = b / p \) applies to both massive particles and photons.

\[KE = \frac{p^2}{2m} = \frac{b^2}{2m\lambda^2} \] gives the kinetic energy of any massive particle. \(KE = \frac{1.505 \text{ eV} \cdot \text{nm}^2}{\lambda^2} \) is for electrons.

SCHRODINGERS EQUATION

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x) \Psi = i\hbar \frac{\partial \Psi}{\partial t} \] is the time dependent schrodinger equation. Here capital psi \(\Psi \) is a function of \(x \) and \(t \).

\(\Psi(x,t) = \psi(x) e^{-i\omega t} \) is the time dependent solution to the schrodinger equation. Lowercase psi \(\psi(x) \) is solution to the time independent schrodinger equation.

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + U(x) \psi = E\psi \] is the time independent schrodinger equation. \(E \) is the energy of the particle.

\[\psi^*(x)\psi(x) = |\psi(x)|^2 \] is the probability density function, it gives the probability per unit length that the particle can be found at \(x \). The * denotes complex conjugate.
\[P_{ab} = \int_a^b |\psi(x)|^2 \, dx \] gives the probability that the particle can be found between \(x=a \) and \(x=b \).

\[\Psi(x,t) = Ae^{(ikx-\omega t)} \] is the solution to the Schrödinger equation for a free particle (the potential energy \(U(x) \) is zero).

Note that \[\hbar \omega = \frac{\hbar^2 k^2}{2m} = E, \] the energy of the particle.

\[\Delta x \Delta p \geq \hbar \] is the Heisenberg uncertainty principle. The uncertainty in momentum multiplied by the uncertainty in position must be greater than or equal to \(\hbar \).

\[\psi_n(x) = \sqrt{\frac{2}{L}} \sin \left(\frac{n\pi}{L} x \right) \] gives the \(n \)th state wavefunction for a particle in an infinite square well of length \(L \).

\[E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L} \right)^2 = \left(\frac{\hbar^2}{8mL^2} \right) n^2 = E_1 n^2 \] gives the \(n \)th state energy for a particle in an infinite square well of length \(L \).

\[n\lambda = 2L \] gives the \(n \)th state wavelength of the wavefunction for a particle in an infinite square well of length \(L \).
THE FINAL STUFF

\[T \sim e^{-2KL} \]

where \(K^2 = \frac{2m}{h^2}(U_o - E) \)

\(T \) is the probability that a particle of energy \(E \) can tunnel through a potential energy barrier of length \(L \) and height \(U_o \).

\[t_o = \frac{b}{2(E_2 - E_1)} \]

This equation gives the half-period of the time-dependent wavefunction that results from a superposition of two stationary states.

\[U(r) = -\frac{\kappa e^2}{r} \]

The “coulomb potential”, or in other words, the potential that an electron in a hydrogen atom “feels”. \(e \) is the electric charge (and here we assume there is a single proton; otherwise it would be \(e(Ze) \)). \(r \) is the distance to the nucleus. \(\kappa = 1/4\pi\varepsilon_0 \) is a constant.

\[\psi(x, y, z) = \sqrt{\frac{8}{abc}} \sin\left(\frac{n_1\pi}{a} x\right) \sin\left(\frac{n_2\pi}{b} y\right) \sin\left(\frac{n_3\pi}{c} z\right) \]

This is the wavefunction for a particle in an 3-dimensional infinite square well of lengths \(a, b, c \), in the \(x, y, z \) directions respectively. \(n_1, n_2, \) and \(n_3 \) are independent of each other, but must be >1.

\[E(n_1, n_2, n_3) = \frac{b^2}{8m} \left(\frac{n_1^2}{a^2} + \frac{n_2^2}{b^2} + \frac{n_3^2}{c^2}\right) \]

Allowed energies for the particle in 3D infinite square well.

\[\psi_{1s}(r, \theta, \phi) = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0} \]

The ground state wavefunction for the electron in the hydrogen atom. \(a_0 \) is the bohr radius.

\[E_s = \frac{-13.6 \text{ eV}}{n^2} \]: Energy levels for the hydrogen atom.
\[E_n = -13.6 \text{ eV } \frac{Z^2}{n^2} \]

Energy levels for an electron subject to \(Z \) positive charges. Note that \(Z=1 \) gives the hydrogen equation.

\[P(r) \, dr = 4\pi r^2 |\psi(r)|^2 \, dr \]

You probably won’t have to use this equation. What it means it that \(P(r) \) probability per unit of radial distance is equal to \(4\pi r^2 |\psi(r)|^2 \). To find probability over a whole range of \(r \), integrate with respect to \(r \).

\[\psi_n(r, \theta, \phi) = R_n(r) Y_l^m(\theta, \phi) \]

General form of hydrogen wavefunctions. \(R \) is the radial wavefunction and \(Y \) is the spherical harmonic. They are independent of each other.

\[L^2 = l(l + 1) \hbar^2 \]

Very important. \(L \) is total angular momentum. \(l \) is the familiar quantum number.

\[L_z = m_\ell \hbar \]

Also important. Angular momentum in z direction is proportional to \(m \) quantum number.

\[Y_{00}, Y_{1\pm 1}, Y_{10} = \ldots \]

The spherical harmonics for \(l=0 \) and \(l=1 \).

\[U = -\mu B \]

Potential energy of a particle in a magnetic field is equal to magnetic moment times field strength.

\[F_z = -\mu_z \frac{dB}{dz} : \text{Follows directly from above. Take derivate w.r.t } z. \]

\[\mu_z = -\frac{e}{m_e} S_z \]

Magnetic moment of electron. \(e \) is electric charge. \(m_e \) is mass. \(S_z \) is the spin of the electron in the z direction.

\[E_n = \left(n + \frac{1}{2} \right) \hbar \omega : \text{energy levels of the harmonic oscillator.} \]

\[S^2 = s(s + 1) \hbar^2 : s \text{ is the spin angular momentum. } \]

\[S_z = m_\ell \hbar : S_z \text{ is the } z \text{ component of the spin angular momentum. } m_\ell \text{ is another quantum number related to } \ell. \]