Re(Pin) Data

Frequency (Hz)

Re Pin (RMS Pa)
\[|\text{Pin}| \]

<table>
<thead>
<tr>
<th>Pin</th>
<th>(RMS Pa)</th>
</tr>
</thead>
</table>

Frequency (Hz)
Pin in the Complex Plane
Im(Uin)

Frequency (Hz)

Im Uin (RMS mm/sec)
Uin in the Complex Plane
Zin in the Complex Plane
Phase lin

Frequency (Hz)

Phi lin (degrees)
lin in the Complex Plane

\(\text{Re } I_{\text{in}} \text{ (RMS nW/m}^2\text{)}\)

\(\text{Im } I_{\text{in}} \text{ (RMS nW/m}^2\text{)}\)

I_{\text{in}} in the Complex Plane
SILin Data

SILin (dB)

Frequency (Hz)
SULin Data

Frequency (Hz)

SULin (dB)
SILin/SPLin/SULin Data

![SILin/SPLin/SULin Data Graph](image_url)
Re(Pout) Data

Frequency (Hz)

Re Pout (RMS Pa)
Re(Uout) Data

Frequency (Hz)

Re(Uout) (RMS mm/sec)
The graph shows the magnitude of $|U_{out}|$ (RMS mm/sec) as a function of frequency (Hz). The x-axis represents frequency ranging from 200 to 2000 Hz, and the y-axis represents $|U_{out}|$ in a logarithmic scale ranging from $10^{-1.8}$ to $10^{-1.1}$. The data points and trend line indicate an increase in $|U_{out}|$ with frequency, particularly noticeable above 1000 Hz.
Frequency (Hz)

$|U_{out}|$ (RMS mm/sec)
Phase Uout

Frequency (Hz)

Phi Uout (degrees)
Uout in the Complex Plane
Phi Zout

Frequency (Hz)

Phi Zout (degrees)
Zout in the Complex Plane
Phase Iout

Frequency (Hz)

Phi Iout (degrees)
I_{out} in the Complex Plane

Re I_{out} (RMS nW/m²) vs. Im I_{out} (RMS nW/m²)
SPLout Data

Frequency (Hz) vs. SPLout (dB) graph.
SI\text{Lin}, SPL\text{in}, SUL\text{in} (dB)

dSLiip = SI\text{Lin}−SPL\text{in}

dSLiiu = SI\text{Lin}−SUL\text{in}

dSLipu = SPL\text{in}−SUL\text{in} (dB)
Complex Pout Data

Re Pout (RMS Pa)

Frequency (Hz)

Im Pout (RMS Pa)

Frequency (Hz)

|Pout| (RMS Pa)

Frequency (Hz)

Cos(Phi Pout)

Frequency (Hz)
Complex U_out Data

- Real part of U_out (RMS mm/sec)
- Imaginary part of U_out (RMS mm/sec)
- Magnitude of U_out (RMS mm/sec)
- Phase of U_out (degrees)
- Cosine of the phase of U_out
- Sine of the phase of U_out

Frequency (Hz)
\[|U_{in}| \text{ Resonance Maxima & Minima} \]

Frequency (Hz)

\[|U_{in}| \text{ (RMS mm/sec)} \]

\[10^{-3} \quad 10^{-2} \quad 10^{-1} \]

200 400 600 800 1000 1200 1400 1600 1800 2000
Im(Zin) Resonance Maxima & Minima

Frequency (Hz)

Re(Zin) (Ohms)

$\times 10^4$
|Zin| Resonance Maxima & Minima

![Graph showing |Zin| (Ohms) vs Frequency (Hz)](image_url)

- Frequency (Hz) range: 0 to 2000 Hz
- |Zin| range: 10^2 to 10^4 Ohms
Resonance Maxima & Minima
|U_{out}| Resonance Maxima & Minima

Frequency (Hz)

|U_{out}| (RMS mm/sec)
|Zout| Resonance Maxima & Minima

Frequency (Hz)

|Zout| (Ohms)
$|I_{out}|$ Resonance Maxima & Minima

$|I_{out}|$ (RMS nW/m2)

Frequency (Hz)
Pin in the Complex Plane

- Re(Pin) [RMS Pa]
- Im(Pin) [RMS Pa]
- Frequency [Hz]
Uin in the Complex Plane

Re(Uin) [RMS mm/s]

Im(Uin) [RMS mm/s]

frequency [Hz]
Zin in the Complex Plane

Re(Zin) [Ohms]

Im(Zin) [Ohms]

frequency [Hz]
lin in the Complex Plane

Real(lin) [RMS nW/m2]

Imag(lin) [RMS nW/m2]

Frequency [Hz]
Pout in the Complex Plane

Re(Pout) [RMS Pa]

Im(Pout) [RMS Pa]

frequency [Hz]

Re(Pout) [RMS Pa]
$Re(U_{out}) [RMS \text{ mm/s}]$

$Im(U_{out}) [RMS \text{ mm/s}]$

frequency [Hz]

Uout in the Complex Plane
Zout in the Complex Plane

frequency [Hz]

Re(Zout) [Ohms] vs. Im(Zout) [Ohms]
Iout in the Complex Plane

Re(Iout) [RMS nW/m²]

Im(Iout) [RMS nW/m²]

frequency [Hz]
D in the Complex Plane

frequency [Hz]
A in the Complex Plane

Re(A) [RMS mm/s²]

Im(A) [RMS mm/s²]

frequency [Hz]
Z in the Complex Plane

Re(Z) [Ohms]

Im(Z) [Ohms]

frequency [Hz]
Complex Gin Data

Re Gin (RMS nkg/s−m²)

Frequency (Hz)

−0.02
0
0.02

0
500
1000
1500
2000

−100
0
100

Frequency (Hz)

Im Gin (RMS nkg/s−m²)

Frequency (Hz)

10
0
1
10
100
1000
10000

Frequency (Hz)

|Gin| (RMS nkg/s−m²)

Frequency (Hz)

−0.5
0
0.5

Frequency (Hz)

Cos(Phi Gin)

Frequency (Hz)

−5
−0.5
0
0.5

Frequency (Hz)

Im Gin (RMS nkg/s−m²)

Re Gin (RMS nkg/s−m²)
Complex Gout Data

Re Gout (RMS nkg/s−m²)

Im Gout (RMS nkg/s−m²)

|Gout| (RMS nkg/s−m²)

Cos(Phi Gout)

Phi Gout (degrees)

Frequency (Hz)
Winrad, Winvrt

Winrad (RMS nJ/m³)

Frequency (Hz)

Winvrt (RMS nJ/m³)

Frequency (Hz)

Wintot (RMS nJ/m³)

Frequency (Hz)
Complex G Data

[Graphs showing complex data with axes labeled: Frequency (Hz), Re G (RMS nkg/s−m²), Im G (RMS nkg/s−m²), |G| (RMS nkg/s−m²), and Cos(Φ Gout)]