|Pin| (RMS Pa) vs Frequency (Hz)
Phase Pin

Frequency (Hz)

Phi Pin (degrees)
Pin in the Complex Plane
Re(Uin) Data

Frequency (Hz)

Re Uin (RMS mm/sec)
Phi Uin

Frequency (Hz)

Phi Uin (degrees)
Cos(\Phi U_{\text{in}})
Uin in the Complex Plane
Phase Zin

Phi Zin (degrees)

Frequency (Hz)
Phi Zin

Frequency (Hz)

Phi Zin (degrees)
|freq| (RMS nW/m2)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Frequency (Hz)
Re(Pout) Data

Frequency (Hz)

Re Pout (RMS Pa)
\[|P_{\text{out}}| \]

Axes:
- **Y-axis:** \(|P_{\text{out}}| \) (RMS Pa)
- **X-axis:** Frequency (Hz)

Scale:
- Y-axis: \(10^{-6} \) to \(10^{-2} \)
- X-axis: 500 to 2500 Hz

Graph Description:
- The graph shows the variation of \(|P_{\text{out}}| \) with frequency.
- Peaks and troughs are visible across the frequency range.

Note: The exact nature of the peaks and troughs would require specific data points or a closer inspection of the graph.
Phi Pout

Frequency (Hz)

Phi Pout (degrees)
Phase Uout

Frequency (Hz)

Phi Uout (degrees)
Cos(\Phi U_{\text{out}})

Frequency (Hz)
Uout in the Complex Plane
Cos(\(\Phi_{\text{Zout}}\))

Frequency (Hz)

Cos(\(\Phi_{\text{Zout}}\))
Zout in the Complex Plane
Re(I_{out}) Data

Frequency (Hz)

Re(I_{out}) (RMS nW/m^2)
|\text{I}_{\text{out}}| (\text{RMS nW/m2})

Frequency (Hz)
I_{out} in the Complex Plane