|Pin| (RMS Pa) vs Frequency (Hz)
Pin in the Complex Plane
Re(Uin) Data

Frequency (Hz)

Re Uin (RMS mm/sec)
Im(Uin)

Frequency (Hz)

Im Uin (RMS mm/sec)
Phase Uin

Frequency (Hz)

Phi Uin (degrees)
Uin in the Complex Plane

Re Uin (RMS mm/sec)

Im Uin (RMS mm/sec)
Re(Zin) Data

Frequency (Hz) vs. Re(Zin) (Ohms) graph showing oscillations and peaks at various frequencies.
Phi Zin
Re(lin) Data

Frequency (Hz)

Re lin (RMS nW/m²)
Image of a line graph showing the imaginary part of the linear response (Im(Iin)) as a function of frequency (Hz). The x-axis represents frequency ranging from 0 to 3000 Hz, and the y-axis represents Im(Iin) in RMS nW/m², with values ranging from -4×10^5 to 0.
Cos(\(\Phi\) lin)

Frequency (Hz)

Cos(\(\Phi\) lin)

0 0.1
0 0
0.1 0
Im(Pout)

Frequency (Hz)

Im Pout (RMS Pa)
Pout in the Complex Plane

Re Pout (RMS Pa)

Im Pout (RMS Pa)
Re(Uout) Data

Frequency (Hz)

Re Uout (RMS mm/sec)
$|U_{out}|$ (RMS mm/sec)

Frequency (Hz)

$|U_{out}|$
Phase Uout

Phi Uout (degrees)

Frequency (Hz)
Cos(Phi Uout)

Frequency (Hz)

Cos(Phi Uout)
|Z_{\text{out}}| \text{ (Ohms)}

Frequency (Hz)
Phase Zout

Frequency (Hz)

Phi Zout (degrees)
Cos(\Phi_{Zout})

Frequency (Hz)
Im(lout)
Phi Iout

Frequency (Hz)

Phi Iout (degrees)
I_{out} in the Complex Plane

Re \(I_{out} \) (RMS nW/m²)

Im \(I_{out} \) (RMS nW/m²)