Re(Pin) Data

Re Pin (RMS Pa)

Frequency (Hz)
$\cos(\Phi \text{ Pin})$

![Graph showing the cosine of the phase pin as a function of frequency (Hz). The x-axis represents frequency from 0 to 3000 Hz, and the y-axis represents the cosine value from -0.8 to 0.2. The graph shows several peaks and troughs across the frequency spectrum.](image-url)
Pin in the Complex Plane

Re Pin (RMS Pa)

Im Pin (RMS Pa)
Re(Uin) Data

Frequency (Hz)

Re Uin (RMS mm/sec)
\[|U_{\text{in}}| \]

| Frequency (Hz) | \(|U_{\text{in}}| \) (RMS mm/sec) |
|----------------|----------------------------------|
| 0 | 0.05 |
| 500 | 0.35 |
| 1000 | 0.2 |
| 1500 | 0.15 |
| 2000 | 0.1 |
| 2500 | 0.05 |
| 3000 | 0.05 |
Phase ΦU_{in}

Frequency (Hz) vs. ΦU_{in} (degrees)
Phi Uin

Frequency (Hz) vs. Phi Uin (degrees)
Uin in the Complex Plane
Phase Zin

Frequency (Hz)

Phi Zin (degrees)
Phi Zin

Frequency (Hz)

Phi Zin (degrees)
Zin in the Complex Plane
$\text{Im}(\text{lin})$

Frequency (Hz)

Im lin (RMS nW/m^2)

10^5
Phase lin

Frequency (Hz)

Phi lin (degrees)
lin in the Complex Plane

Re lin (RMS nW/m²)

Im lin (RMS nW/m²)
Phi Pout

Frequency (Hz)

Phi Pout (degrees)
Pout in the Complex Plane
Im(Uout)

Frequency (Hz)

Im(Uout) (RMS mm/sec)
|U_{out}| (RMS mm/sec) vs Frequency (Hz)
Uout in the Complex Plane

Re Uout (RMS mm/sec)

Im Uout (RMS mm/sec)
Re(Zout) Data
Phase Zout

Frequency (Hz)

Phi Zout (degrees)
Zout in the Complex Plane
Re(I_{out}) Data

Frequency (Hz)

Re(I_{out}) (RMS nW/m^2)
Im(I_{out})

Frequency (Hz)

Im I_{out} (RMS nW/m^2)
Cos(\Phi I_{\text{out}})

Frequency (Hz)
Iout in the Complex Plane

Re Iout (RMS nW/m²)

Im Iout (RMS nW/m²)

Iout in the Complex Plane