Im(Pin) vs Frequency (Hz)
\(|Pin| \)

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2500</td>
</tr>
</tbody>
</table>

\(|Pin| \) (RMS Pa)
Cos(\(\Phi_{\text{Pin}}\))

Frequency (Hz)

Cos(\(\Phi_{\text{Pin}}\))

Frequency (Hz)
Pin in the Complex Plane
Re(Uin) Data

Frequency (Hz)

Re(Uin) (RMS mm/sec)
Phase Uin

Frequency (Hz)

Phi Uin (degrees)
Cos(\Phi \, U_{in})

Frequency (Hz)
Uin in the Complex Plane
Phase Zin

Frequency (Hz)

Phi Zin (degrees)
Im(\text{lin})

Frequency (Hz)

Im lin (RMS nW/m²)

$X \times 10^5$
\[\text{|lin|} \]

Frequency (Hz)

\(|\text{lin}| \) (RMS nW/m²)

\[x \times 10^5 \]
|lin| (RMS nW/m²) vs Frequency (Hz)

- |lin| (RMS nW/m²) axis
- Frequency (Hz) axis

Graph showing the |lin| (RMS nW/m²) over a range of frequencies from 500 Hz to 2500 Hz.
|P_{out}| (RMS Pa)

Frequency (Hz)
Pout in the Complex Plane

Re Pout (RMS Pa)
Im Pout (RMS Pa)
Re(Uout) Data

Re Uout (RMS mm/sec)

Frequency (Hz)
Phase $\Phi_{U_{out}}$ vs. Frequency (Hz)
Uout in the Complex Plane
Im(Zout) vs. Frequency (Hz)
Phi Zout

Frequency (Hz)

Phi Zout (degrees)
Cos(\(\Phi_{\text{Zout}}\))

Frequency (Hz)

Cos(\(\Phi_{\text{Zout}}\))
Zout in the Complex Plane
Re(Iout) Data

Frequency (Hz)

Re(Iout) (RMS nW/m²)
Phase Iout

Frequency (Hz)

Phi Iout (degrees)
Cos(\Phi_{I_{out}})

Frequency (Hz)
I_{out} in the Complex Plane