Pitch = human ear’s perception of frequency of a sound vibration

Low pitch ⇔ low frequency of vibration/oscillation
High pitch ⇔ high frequency of vibration/oscillation

Audible Frequency Range of Human Hearing:
15 – 20 Hz < f < 20 KHz (≈ 3 orders of magnitude)

As we grow older, dynamic range of frequencies we can hear decreases (both high and low frequencies)

Frequency ranges of musical instruments typically ~ 100 Hz to ~ few KHz
 e.g. guitar Low E = 82 Hz
 High E = 330 Hz

Piano highest note is ~ 4200 Hz
Very little above ~ 10 KHz (squeals & scrapes)

Human ear needs to be able to perceive a sound for a minimum length of time in order to determine pitch – this minimum time depends on frequency:

\[
\text{For } f \sim 100 \text{ Hz } (\tau \sim 10 \text{ m sec}): \quad t_{\text{min}} \approx 40 \text{ m sec} \quad (\sim 4 \text{ cycles})
\]
\[
\text{For } f \geq 1000 \text{ Hz } (\tau \leq 1 \text{ m sec}): \quad t_{\text{min}} \geq 13 \text{ m sec} \quad (\geq 13 \text{ cycles})
\]

Perceived pitch also depends to some extent on the **loudness** of the sound.
— Effect arises due to non-linearities in the response of the ear.
— Pitch appears to **decrease** slightly as loudness increases.
— This effect exists only for pure/simple tones (!!!)
— Complex tones show **no** perceived pitch changes with intensity! (why??)

Two ears of the same person may **NOT** perceive sound of a given frequency as having the same pitch!!! = DIPLACUSIS – happens only for diseased and/or injured ears.

For **normal** musical purposes, frequency and pitch are synonymous (usually) — Applies only to **periodic** sound vibrations.
Sound **pulses** are made up of a **continuum** of frequencies, i.e. sound pulses are **anharmonic** and hence have **no** characteristic frequency and/or pitch.

Human ear can discriminate changes in sound intensity levels of **JND ~1/2 dB**. This corresponds to a ~ 12% change in sound intensity. Thus, the ear is not very sensitive to accurately discriminating changes in loudness of sounds.

Typical human ear can discern changes in pitch/frequency at the $\Delta f \sim 3$ Hz level in the frequency range $30 \leq f \leq 1000$ Hz.

Note that: $\frac{\Delta f}{f} = \frac{3}{30} = 10\% \quad (\approx 2$ semitones$)$,

Whereas: $\frac{\Delta f}{f} = \frac{3}{1000} = 0.3\% \quad (\approx 0.1$ semitones$)$

A good musician can actually discern frequency/pitch changes that are **much** smaller than this. Above $f \geq 500$ Hz, ≈ 0.03 semitone!!!

∴ The human ear/brain **is** capable of detecting small changes in frequency!!!

The human ear/brain is also capable of perceiving a fundamental even when **no** fundamental is actually present!!!

— This is the so-called **missing fundamental effect**.

— This effect is consequence of effect of the non-linear response in/inside the human ear itself, and/or a non-linear response in the human brain’s **processing** of frequency information – e.g. whenever a quadratic non-linear response exists (in any system), if two signals A and B with frequencies f_A and f_B are input to that system, sum and difference frequencies ($f_A + f_B$) and $|f_A - f_B|$ are produced! Thus a 2nd harmonic, $2f_i$ and a 3rd harmonic, $3f_i$ can produce a “missing” fundamental from the difference frequency, $|3f_i - 2f_i| = f_i$!!! For further details on distortion, read e.g. Professor Errede’s UIUC P498POM lecture notes on “Theory of Distortion I & II” – available on the web at: http://online.physics.uiuc.edu/courses/phys498pom/498pom_lectures.html

— For some musical instruments – e.g. the trumpet, the oboe and/or the bassoon – the 2nd (even 3rd) harmonics have a **larger** amplitude than that of the fundamental, however we perceive the “note” that is played on the trumpet (and/or oboe, bassoon) as that of the fundamental!!!
Note that the vertical axes are displayed on a logarithmic scale.

$f_{A5} = 880.0 \text{ Hz}, f_{Bb5} = 932.3 \text{ Hz}$
Legal Disclaimer and Copyright Notice:

Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any consequential, incidental, and/or other damages resulting from the mis-use of information contained in this document. The author has made every effort possible to ensure that the information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and International Copyright Laws. No portion of this document may be reproduced in any manner for commercial use without prior written permission from the author of this document. The author grants permission for the use of information contained in this document for private, non-commercial purposes only.