Phys 102 – Lecture 8

Circuit analysis and Kirchhoff’s rules
Recall from last time...

We solved circuits like... by combining series & parallel components

What about a circuit like...

Phys. 102, Lecture 8, Slide 2
Kirchhoff’s loop rule

Voltages around a loop sum to zero

\[\sum \Delta V = 0 \]

Is voltage positive or negative?

- **Batteries**: + end is always at higher potential
- **Resistors**: higher/lower potential depends on current direction
- **Capacitors**: higher/lower potential depends on which plate has \(+Q/–Q\)

Label +/- for higher/lower electric potential

Go around loop and write \(+V_{\text{element}}\) if electric potential increases \(–V_{\text{element}}\) if it decreases

Phys. 102, Lecture 8, Slide 3
Calculation: single loop practice

Calculate the current I in the circuit

What if we go around the loop the “wrong” way?

What if we’re not given the current direction?

What if we pick the “wrong” direction?
Calculation: single loop practice

How can the current be driven opposite battery 2?

\[\begin{align*}
V_1 &= 50 \text{ V} \\
R_1 &= 5 \Omega \\
R_2 &= 15 \Omega \\
V_2 &= 10 \text{ V}
\end{align*} \]
ACT: Checkpoint 1.1

Calculate the current through R_1.

A. $I_1 = 0.5$ A
B. $I_1 = 1.0$ A
C. $I_1 = 1.5$ A
ACT: Checkpoint 1.2

Calculate the current through R_2.

A. $I_2 = 0.5$ A
B. $I_2 = 1.0$ A
C. $I_2 = 1.5$ A
Nerve cell equivalent circuit

Neurons have different types of ion channels (K^+, Na^+, and Cl^-) that pump current into and out of cell – act like batteries!
Na⁺ channels have a “gate” (represented by the switch S) that allows or blocks ion flow. In its resting state, a Na⁺ channel is shut (i.e. switch S is open). Which equation is correct?

A. $+\varepsilon_K - I_K R_K - I_K R_{Cl} - \varepsilon_{Cl} = 0$

B. $+\varepsilon_K - I_K R_K - I_{Na} R_{Na} - \varepsilon_{Na} = 0$

C. $+\varepsilon_K + I_K R_K - I_{Cl} R_{Cl} - \varepsilon_{Cl} = 0$
Calculation: electric potential

Find the electric potential difference across the cell $V_{in} - V_{out}$ (Assume $V_{out} = 0$ for reference)

$\varepsilon_K = 80$ mV, $\varepsilon_{Na} = 60$ mV, $\varepsilon_{Cl} = 50$ mV

$R_K = 2$ MΩ, $R_{Na} = 0.2$ MΩ, $R_{Cl} = 5$ MΩ

\[
\varepsilon_K - IR_K - IR_{Cl} - \varepsilon_{Cl} = 0
\]

or:

\[
V_{in} + \varepsilon_K - IR_K = V_{out}
\]

\[
V_{out} - IR_{Cl} - \varepsilon_{Cl} = V_{in}
\]
Kirchhoff’s junction rule

The sum of currents into a junction equals the sum of currents out of a junction

\[\sum I_{in} = \sum I_{out} \]

Example:

\[I_1 + I_2 + I_3 = I_4 + I_5 \]
ACT: Checkpoint 1.3

Calculate the current through the battery I_B.

A. $I_B = 0.5\, \text{A}$
B. $I_B = 1.0\, \text{A}$
C. $I_B = 1.5\, \text{A}$

Phys. 102, Lecture 8, Slide 12
In the circuit, the current through R_C is 0. What is the current through R_3 and the value of R_x?

No current flows through R_C so $I_2 = I_3$ and $I_1 = I_x$

No current flows through R_C so $V_C = 0$
During nerve impulse, Na⁺ channels open (i.e. switch S closes) and allow Na⁺ to enter the cell.

\[
V_{out} = 0
\]

\[
V_{in} = ?
\]

What happens to the currents through the channels and the potential in the cell?
Calculation: two loop circuit

Given the circuit to the right, find I_K, I_{Na} and I_{Cl} and $V_{in} - V_{out}$.

\[
\varepsilon_K = 80 \text{ mV}, \varepsilon_{Na} = 60 \text{ mV}, \varepsilon_{Cl} = 50 \text{ mV} \\
R_K = 2 \text{ M}\Omega, R_{Na} = 0.2 \text{ M}\Omega, R_{Cl} = 5 \text{ M}\Omega
\]

1. Label all currents
2. Label +/− for all elements
3. Choose loop and direction
4. Write down voltage differences

Phys. 102, Lecture 8, Slide 15
What is the correct expression for “Loop 3” in the circuit below?

A. $+\varepsilon_{Cl} - I_{Cl} R_{Cl} - I_{Na} R_{Na} + \varepsilon_{Na} = 0$

B. $+\varepsilon_{Cl} - I_{Cl} R_{Cl} + I_{Na} R_{Na} + \varepsilon_{Na} = 0$

C. $+\varepsilon_{Cl} + I_{Cl} R_{Cl} - I_{Na} R_{Na} + \varepsilon_{Na} = 0$
Calculation: two loop circuit

Given the circuit to the right, find I_K, I_{Na} and I_{Cl} and $V_{in} - V_{out}$.

$\varepsilon_K = 80 \text{ mV}$, $\varepsilon_{Na} = 60 \text{ mV}$, $\varepsilon_{Cl} = 50 \text{ mV}$

$R_K = 2 \text{ M}\Omega$, $R_{Na} = 0.2 \text{ M}\Omega$, $R_{Cl} = 5 \text{ M}\Omega$

We have 3 unknowns, need 3 equations

Loop 1:

Loop 2:

Loop 3:

5. Write down junction rule
What is the correct expression for junction in the circuit?

A. \(I_K + I_{Na} = I_{Cl} \)
B. \(I_{Na} + I_{Cl} = I_K \)
C. \(I_{Cl} + I_K = I_{Na} \)
Calculation: two loop circuit

Given the circuit to the right, find I_K, I_{Na} and I_{Cl} and $V_{in} - V_{out}$.

$\varepsilon_K = 80 \text{ mV}, \varepsilon_{Na} = 60 \text{ mV}, \varepsilon_{Cl} = 50 \text{ mV}$

$R_K = 2 \text{ M}\Omega, R_{Na} = 0.2 \text{ M}\Omega, R_{Cl} = 5 \text{ M}\Omega$

3 equations, 3 unknowns, the rest is algebra!

(1) $\varepsilon_K - I_K R_K - I_{Na} R_{Na} + \varepsilon_{Na} = 0$

(2) $\varepsilon_K - I_K R_K - I_{Cl} R_{Cl} - \varepsilon_{Cl} = 0$

(3) $I_{Na} + I_{Cl} = I_K$

Substitute Eq. (3) into Eq. (2) and rearrange

(2') $-30 - 7I_K + 5I_{Na} = 0$
Calculation: two loop circuits

Now 2 equations (1 and 2’), 2 unknowns (I_K and I_{Na})

\[(1) \quad +70 - I_K - 0.1I_{Na} = 0 \quad I_K = 70 - 0.1I_{Na} \]
\[(2') \quad +30 - 7I_K + 5I_{Na} = 0 \quad +30 - 7(70 - 0.1I_{Na}) + 5I_{Na} = 0 \]

Substitute I_K in Eq. (1) into Eq. (2’) and rearrange

\[-460 + 5.7I_{Na} = 0 \quad I_{Na} = \frac{460 \text{ mV}}{5.7 \Omega} = 81 \text{nA} \]

Plug solution into Eq. (2’) to get I_K

\[+30 - 7I_K + 5 \cdot 81 = 0 \quad I_K = \frac{435 \text{ mV}}{7 \Omega} = 62 \text{nA} \]

Use junction Eq. (3) to get I_{Cl}

\[I_{Cl} = 62 - 81 = -19 \text{nA} \]
We found that $I_K = 62$ nA, $I_{Na} = 81$ nA and $I_{Cl} = -19$ nA. Which of the following statements is FALSE?

A. I_K is out of the cell
B. I_{Na} is into the cell
C. I_{Cl} is into the cell
Calculation: two loop circuit

Find the new $V_{in} - V_{out}$:

$V_{out} = 0$

$V_{in} = -70 \text{mV}$

Phys. 102, Lecture 8, Slide 22
Summary of today’s lecture

• Two basic principles:
 • Kirchhoff loop rule
 Voltages around circuit loop sum to zero (based on conservation of energy)
 \[\sum \Delta V = 0 \]
 • Kirchhoff junction rule
 Currents into a circuit branch equal currents out (based on conservation of charge)
 \[\sum I_{in} = \sum I_{out} \]
Summary of today’s lecture

• Basic approach to solving complex circuits:
 1. Label all currents
 2. Label +/- for all elements
 3. Choose loop(s) and direction(s)
 4. Write down voltage differences
 5. Write down junction rule

The rest is algebra!