

Phys 102 – Lecture 8

Circuit analysis and Kirchhoff's rules

Recall from last time...

We solved circuits like... by combining series & parallel components

What about a circuit like...

Kirchhoff's loop rule

Voltages around a loop sum to zero

$$\sum \Delta V = 0$$

Is voltage positive or negative?

+ * R

<u>Batteries</u>: + end is always at higher potential

<u>Resistors</u>: higher/lower potential depends on current direction

<u>Capacitors</u>: higher/lower potential depends on which plate has +Q/-Q

Label +/— for higher/lower electric potential Go around loop and write $+V_{element}$ if electric potential increases $-V_{element}$ if it decreases

Calculation: single loop practice

Calculate the current *I* in the circuit

What if we go around the loop the "wrong" way?

What if we're not given the current direction?

What if we pick the "wrong" direction?

Calculation: single loop practice

How can the current be driven opposite battery 2?

ACT: Checkpoint 1.1

Calculate the current through R_1 .

A.
$$I_1 = 0.5 \text{ A}$$

B.
$$I_1 = 1.0 \text{ A}$$

C.
$$I_1 = 1.5 \text{ A}$$

ACT: Checkpoint 1.2

Calculate the current through R_2 .

A.
$$I_2 = 0.5 \text{ A}$$

B.
$$I_2 = 1.0 \text{ A}$$

C.
$$I_2 = 1.5 \text{ A}$$

Nerve cell equivalent circuit

Neurons have different types of ion channels (K⁺, Na⁺, and Cl⁻) that pump current into and out of cell – act like batteries!

ACT: loop

Na⁺ channels have a "gate" (represented by the switch *S*) that allows or blocks ion flow. In its resting state, a Na⁺ channel is shut (i.e. switch *S* is open). Which equation is correct?

$$\mathbf{A.} + \varepsilon_K - I_K R_K - I_K R_{Cl} - \varepsilon_{Cl} = 0$$

$$\mathbf{B.} + \varepsilon_K - I_K R_K - I_{Na} R_{Na} - \varepsilon_{Na} = 0$$

$$\mathbf{C.} + \varepsilon_K + I_K R_K - I_{Cl} R_{Cl} - \varepsilon_{Cl} = 0$$

Calculation: electric potential

Find the electric potential difference across the cell $V_{in} - V_{out}$ (Assume $V_{out} = 0$ for reference)

$$\varepsilon_K$$
 = 80 mV, ε_{Na} = 60 mV, ε_{Cl} = 50 mV
 R_K = 2 M Ω , R_{Na} = 0.2 M Ω , R_{Cl} = 5 M Ω

$$\varepsilon_{K} - IR_{K} - IR_{Cl} - \varepsilon_{Cl} = 0$$

$$V_{in} + \varepsilon_{K} - IR_{K} = V_{out}$$

or:
$$V_{out} - IR_{Cl} - \varepsilon_{Cl} = V_{in}$$

Kirchhoff's junction rule

The sum of currents into a junction equals the sum of currents out of a junction

$$\sum I_{in} = \sum I_{out}$$

Example:

$$I_1 + I_2 + I_3 = I_4 + I_5$$

ACT: Checkpoint 1.3

Calculate the current through the battery I_B .

A.
$$I_B = 0.5 \text{ A}$$

B.
$$I_B = 1.0 \text{ A}$$

C.
$$I_B = 1.5 \text{ A}$$

Calculation: Kirchhoff's laws

In the circuit, the current through R_c is 0. What is the current through

 R_3 and the value of R_x ?

From EX1 FA13

No current flows through R_C so $I_2 = I_3$ and $I_1 = I_x$

No current flows through R_C so $V_C = 0$

Nerve cell equivalent circuit

During nerve impulse, Na⁺ channels open (i.e. switch *S* closes) and allow Na⁺ to enter the cell

What happens to the currents through the channels and the potential in the cell?

Phys. 102, Lecture 8, Slide 14

Calculation: two loop circuit

Given the circuit to the right, find I_K , I_{Na} and I_{CI} and $V_{in} - V_{out}$.

$$\varepsilon_K$$
 = 80 mV, ε_{Na} = 60 mV, ε_{Cl} = 50 mV
 R_K = 2 M Ω , R_{Na} = 0.2 M Ω , R_{Cl} = 5 M Ω

- 1. Label all currents
- 2. Label +/- for all elements
- 3. Choose loop and direction
- 4. Write down voltage differences

ACT: Kirchhoff loop rule

What is the correct expression for "Loop 3" in the circuit below?

$$A. + \varepsilon_{Cl} - I_{Cl}R_{Cl} - I_{Na}R_{Na} + \varepsilon_{Na} = 0$$

B.
$$+\varepsilon_{Cl} - I_{Cl}R_{Cl} + I_{Na}R_{Na} + \varepsilon_{Na} = 0$$

C.
$$+\varepsilon_{Cl} + I_{Cl}R_{Cl} - I_{Na}R_{Na} + \varepsilon_{Na} = 0$$

Calculation: two loop circuit

Given the circuit to the right, find I_K , I_{Na} and I_{CI} and $V_{in} - V_{out}$.

$$\varepsilon_K$$
 = 80 mV, ε_{Na} = 60 mV, ε_{Cl} = 50 mV
 R_K = 2 M Ω , R_{Na} = 0.2 M Ω , R_{Cl} = 5 M Ω

We have 3 unknowns, need 3 equations

Loop 2:

Loop 3:

5. Write down junction rule

ACT: Kirchhoff junction rule

What is the correct expression for junction in the circuit?

$$A. I_K + I_{Na} = I_{Cl}$$

$$\mathbf{B.} \ \ I_{Na} + I_{Cl} = I_{K}$$

$$\mathbf{C.} \quad \boldsymbol{I}_{Cl} + \boldsymbol{I}_{K} = \boldsymbol{I}_{Na}$$

Calculation: two loop circuit

Given the circuit to the right, find I_K , I_{Na} and I_{Cl} and $V_{in} - V_{out}$.

$$\varepsilon_K = 80 \text{ mV}, \ \varepsilon_{Na} = 60 \text{ mV}, \ \varepsilon_{Cl} = 50 \text{ mV}$$
 $R_K = 2 \text{ M}\Omega, \ R_{Na} = 0.2 \text{ M}\Omega, \ R_{Cl} = 5 \text{ M}\Omega$

3 equations, 3 unknowns, the rest is algebra!

(1)
$$+\varepsilon_K - I_K R_K - I_{Na} R_{Na} + \varepsilon_{Na} = 0 +80 - 2I_K - 0.2I_{Na} + 60 = 0$$

(2)
$$+\varepsilon_K - I_K R_K - I_{Cl} R_{Cl} - \varepsilon_{Cl} = 0$$
 $+80 - 2I_K - 5I_{Cl} - 50 = 0$

(3)
$$I_{Na} + I_{Cl} = I_K$$
 $+80 - 2I_K - 5(I_K - I_{Na}) - 50 = 0$

Substitute Eq. (3) into Eq. (2) and rearrange

(2')
$$+30-7I_K+5I_{Na}=0$$

Calculation: two loop circuits

Now 2 equations (1 and 2'), 2 unknowns (I_K and I_{Na})

(1)
$$+70 - I_K - 0.1I_{Na} = 0$$
 $I_K = 70 - 0.1I_{Na}$
(2') $+30 - 7I_K + 5I_{Na} = 0$ $+30 - 7(70 - 0.1I_{Na}) + 5I_{Na} = 0$

Substitute I_{κ} in Eq. (1) into Eq. (2') and rearrange

$$-460 + 5.7I_{Na} = 0$$
 $I_{Na} = \frac{460 \,\text{mV}}{5.7 \,\text{M}\,\Omega} = 81 \,\text{nA}$

Plug solution into Eq. (2') to get I_K +30-7 I_K +5·81 = 0 $I_K = \frac{435 \,\text{mV}}{7 \,\text{M} \,\Omega} = 62 \,\text{nA}$

Use junction Eq. (3) to get I_{Cl}

$$I_{CI} = 62 - 81 = -19 \,\text{nA}$$

ACT: Kirchhoff junction rule

We found that $I_K = 62$ nA, $I_{Na} = 81$ nA and $I_{Cl} = -19$ nA. Which of the following statements is FALSE?

- A. I_K is out of the cell
- B. I_{Na} is into the cell
- C. I_{Cl} is into the cell

Calculation: two loop circuit

Summary of today's lecture

- Two basic principles:
- Kirchhoff loop rule

Voltages around circuit loop sum to zero (based on conservation of energy)

$$\sum \Delta V = 0$$

• Kirchhoff junction rule

Currents into a circuit branch equal currents out (based on conservation of charge)

$$\sum I_{in} = \sum I_{out}$$

Summary of today's lecture

- Basic approach to solving complex circuits:
 - 1. Label all currents
 - 2. Label +/- for all elements
 - 3. Choose loop(s) and direction(s)
 - 4. Write down voltage differences
 - 5. Write down junction rule

The rest is algebra!