

Phys 102 – Lecture 28

Life, the universe, and everything

Today we will...

 Learn about the building blocks of matter & fundamental forces

Quarks and leptons

Exchange particle ("gauge bosons")

Learn about the Big Bang theory

Hubble law & the expansion of the universe

The early universe

Unification of forces

Fundamental particles

Are the electron, proton, and neutron the fundamental building blocks of matter? Evidence says NO for proton & neutron

Particle "zoo" Hundreds of particles identified in particle accelerator experiments

"sigma"
$$\Sigma^0$$
, Σ^+ , Σ^- "xi" Ξ^0 , Ξ^- "pion" π^0 , π^+ , π^- etc... "kaon" κ^0 , κ^+

Neutron magnetic dipole moment

Neutron has spin ½, is electrically neutral, yet has a magnetic dipole moment!

Indicates these are *composite* particles

Quarks

"Three quarks for Muster Mark" Finnegan's Wake, James Joyce

Neutrons and protons are composite particles

Discovered in 1968

"Flavors"

Quark up (u) down (d)

Charge $+\frac{2}{3}e$ $-\frac{1}{3}e$

Hadrons are particles composed of quarks

1 proton = uud 1 neutron = udd

ACT: Beta decay

Last lecture, we saw that β^- decay involves converting a neutron into a proton.

How could this decay be described in terms of quarks?

- A. A d converts to a u
- B. A *u* converts to a *d*
- C. A d converts to an e⁻

ACT: Hadrons & quarks

The Δ^- is an exotic hadron with charge –e.

What could the quark makeup of this particle be?

- A. uuu
- B. ddd
- C. an $e^- \& v_e$

Building blocks of matter

Ordinary matter is made of u, d (quarks), e and v_e (leptons)

Hadrons (ex: n, p) are composite particles made of quarks

Quarks and leptons (ex: e⁻) are believed to be the elementary particles

There is a corresponding *anti*particles for each elementary particles! Same *m*, opposite *q*

ACT: Quarks

In Lect. 26 we saw that two electrons cannot be in the same state (i.e. have the same quantum numbers).

Can two quarks be in the same state?

- A. Yes
- B. No

4 Fundamental forces of Nature

Gravitational force (solar system, galaxies)

Electromagnetic force (atoms, molecules)

Strong force (atomic nuclei)

Weak force (radioactive decay)

weakest

strongest

Particle physics view of forces

Matter interacts through exchange of *mediator* or *exchange* particles

Ex: electromagnetic exchange particle is the *photon*!

The "Standard Model"

Exchange particles for are known as gauge bosons

What about gravity?

The Higgs boson

Higgs boson gives elementary particles their masses

The more massive the particle, the more it interacts with the Higgs boson

ACT: Fundamental forces

Which of the following particles can interact via the electromagnetic force?

- A. A muon
- B. An up quark
- C. A strange quark
- D. All of the above
- E. None of the above

The expansion of the universe

Astronomers observed that all celestial bodies are *receding* from us. Therefore, the universe is expanding!

ACT: Doppler effect

Recall Lect. 15

The wavelength λ_{obs} observed on earth from the spaceship is

- A. Larger than λ_{emit}
- B. The same as λ_{emit}
- C. Smaller than λ_{emit}

ACT: Hubble law

More distant celestial objects recede from us faster

The light spectrum of a stationary galaxy is given by:

Which of the following belongs to the most distant galaxy?

The Big Bang

All celestial bodies are receding from us and each other,

so universe must be expanding...

DEMO

Distances increase in every direction

Assuming a constant rate of expansion: $v = \frac{d}{t} = H_0 d$

$$t_{universe} = \frac{1}{H_0} = \frac{1}{70} \frac{\text{s} \cdot \text{Mpc}}{\text{km}} 3 \times 10^{19} \frac{\text{km}}{\text{Mpc}} \frac{1}{60 \cdot 60 \cdot 24 \cdot 365} \frac{\text{yr}}{\text{s}} \approx 14 \,\text{Gyr}$$

1 "Megaparsec"= 1 Mpc = 3×10^{19} km

Best estimate is 13.8 Gyr

A journey back in time...

Early universe was smaller, more dense, & hotter

Unification

At high energies, fundamental forces begin to look the same

Some unsolved problems

What is dark matter?

We cannot detect most of the matter in the universe. It is "dark".

What is the nature of dark energy?

The expansion of the universe is <u>accelerating</u>. A "dark energy" is driving this acceleration

Why is there more matter than antimatter?

The universe is made up mostly of matter

Can the fundamental forces be unified?

There is no unified model of electroweak & strong force, nor a quantum theory of gravity