
Phys 102 – Lecture 24
The classical and Bohr atom
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State of late 19th Century Physics

• Two great theories

Newton’s laws of mechanics & gravity

Maxwell’s theory of electricity & magnetism, including 
EM waves

• But... some unsettling problems

Stability of atom & atomic spectra

Photoelectric effect

...and others

• New theory required

“Classical physics”

Quantum mechanics
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Stability of classical atom

Prediction – orbiting e– is an oscillating charge & should emit 
EM waves in every direction

+ –

Classical atom is NOT stable!

EM waves carry energy, so e– should lose energy & fall into 
nucleus!  

Lifetime of classical atom = 10–11 s
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Reality – Atoms are stable

Recall Lect. 15 & 16



Atomic spectrum

Recall Lecture 22

Reality – Only certain
frequencies of light are 
emitted & are different 
for different elements

Prediction – e– should emit light at whatever frequency f it 
orbits nucleus

sind θ mλ

Diffraction grating

Discharge tube
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Quantum mechanics

Wave-particle duality – matter behaves as a wave

Particles can be in many places at the same time
Processes are probabilistic not deterministic
Measurement changes behavior

QM is one of most successful and accurate scientific theories

Predicts measurements to <10–8 (ten parts per billion!) 
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Quantum mechanics explains stability of atom & atomic 
spectra (and many other phenomena...)

Certain quantities (ex: energy) are quantized



Matter waves

Matter behaves as a wave with de Broglie wavelength 

h
λ

p
Wavelength of 

matter wave Momentum 
mv of particle

346.626 10 J s  h

Planck’s constant
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Ex: a fastball (m = 0.5 kg, v = 100 mph ≈ 45 m/s)

Ex: an electron (m = 9.1×10–31 kg, v = 6×105 m/s)

fastball

h
λ

p


34
356.626 10

3 10 m
0.5 45




  


20 orders of magnitude 
smaller than the proton!

electron
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How could we detect matter wave? Interference!



X-ray diffraction e– diffraction

Identical pattern emerges if de Broglie wavelength of e– equals 
the X-ray wavelength!

X-ray vs. electron diffraction

DEMO
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–

Electron diffraction

Phys. 102, Lecture 24, Slide 8

Merli – 1974
Tonomura – 1989 

Beam of mono-energetic e– passes through double slit

h
λ

p
sind θ mλ

Wait! Does this mean e–

passes through both slits?

–

Interference pattern = 
probability

–

––

–

–

What if we measure which 
slit the e– passes through?



ACT: Double slit interference

Consider the interference pattern from a beam of mono-
energetic electrons A passing through a double slit.
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Now a beam of electrons B with 4x 
the energy of A enters the slits. 
What happens to the spacing Δy
between interference maxima?

A. ΔyB = 4 ΔyA

B. ΔyB = 2 ΔyA

C. ΔyB = ΔyA

D. ΔyB = ΔyA / 2

E. ΔyB = ΔyA / 4

Δy

L
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The “classical” atom
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Orbiting e– has centripetal acceleration:

Total energy of electron:

Negatively charged electron orbits around positively charged 
nucleus

Hydrogen atom

Recall Lect. 4
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The Bohr model

+

2πr

nL n

Angular momentum is quantized

e– behave as waves & only orbits that fit an integer number 
of wavelengths are allowed
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h

π
 “h bar”
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nλ 1,2,3n 

Orbit circumference



ACT: Bohr model

What is the quantum number n of this hydrogen atom?

+
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A. n = 1

B. n = 3

C. n = 6

D. n = 12



Energy and orbit quantization
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Angular momentum is quantized

“Bohr radius”
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Smallest orbit 
has energy –E1

“ground state”

Free electron

1,2,3n 



ACT: CheckPoint 3.2
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Suppose the charge of the nucleus is doubled (+2e), but 
the e– charge remains the same (–e). How does r for the 
ground state (n = 1) orbit compare to that in hydrogen?

A. 1/2 as large B. 1/4 as large C. the same

2 2

2n

n
r

mke
For hydrogen:

+ –
+2e



ACT: CheckPoint 3.3
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There is a particle in nature called a muon, which has the 
same charge as the electron but is 207 times heavier. A muon
can form a hydrogen-like atom by binding to a proton.

How does the radius of the ground state (n = 1) orbit for 
this hydrogen-like atom compare to that in hydrogen?

A. 207× larger B. The same C. 207× smaller



Atomic units

252 10 J m 1240eV nmhc     

2 2 1
2

137

ke ke
π

c hc
 

2 138.2 10 J 511,000eV  mc

“Electron Volt” – energy gained by charge +1e when accelerated 
by 1 Volt: 

“Fine structure constant” (dimensionless)

At atomic scales, Joules, meters, kg, etc. are not convenient units 

U qV 1e = 1.610–19 C, so 1 eV = 1.610–19 J

Planck constant: h = 6.626  10–34 J∙s
Speed of light: c = 3  108 m/s

Electron mass: m = 9.1  10–31 kg

Since , ke2 has units of eV∙nm like hc
2ke

U
r


2 1.44eV nmke  
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Calculation: energy & Bohr radius
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Energy of electron in H-like atom (1 e–, nuclear charge +Ze):

Radius of electron orbit:
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ACT: Hydrogen-like atoms

Consider an atom with a nuclear charge of +2e with a 
single electron orbiting, in its ground state (n = 1), i.e. He+. 
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A. 13.6 eV

B. 2 × 13.6 eV

C. 4 × 13.6 eV

How much energy is required to ionize the atom totally?



e– beam with momentum p0 passes through slit will diffract

Heisenberg Uncertainty Principle

a
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2
yy p  

Uncertainty in y

Uncertainty in 
y-momentum

–
p0

pf

Δpy

p0

Δy =

e– passed somewhere 
inside slit.
Uncertainty in y

Momentum was along x, but 
e– diffracts along y.
Uncertainty in y-momentum

If slit narrows, diffraction pattern spreads out



ACT: CheckPoint 4
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The Bohr model cannot be correct! To be consistent with 
the Heisenberg Uncertainty Principle, which of the 
following properties cannot be quantized? 

1. Energy is quantized

2. Angular momentum is quantized

3. Radius is quantized

4. Linear momentum & velocity are quantized
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A. All of the above

B. #1 & 2

C. #3 & 4



Summary of today’s lecture

• Classical model of atom

Predicts unstable atom & cannot explain atomic spectra

• Quantum mechanics

Matter behaves as waves

Heisenberg Uncertainty Principle

• Bohr model

Only orbits that fit n electron wavelengths are allowed
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Explains the stability of the atom
Energy quantization correct for single e– atoms (H, He+, Li++)
However, it is fundamentally incorrect

Need complete quantum theory (Lect. 26)


