

Phys 102 – Lecture 22

Interference

Physics 102 lectures on light

Light as a wave

- Lecture 15 EM waves
- Lecture 16 Polarization
- Lecture 22 & 23 Interference & diffraction

Light as a ray

- Lecture 17 Introduction to ray optics
- Lecture 18 Spherical mirrors
- Lecture 19 Refraction & lenses
- Lecture 20 & 21 Your eye & optical instruments

Light as a particle

Lecture 24 & 25 – Quantum mechanics

Today we will...

Learn how waves interfere

In phase vs. out of phase

Constructive vs. destructive interference

Apply these concepts

Young's double slit interference

Multiple slit interference

Superposition of waves

Two waves are in phase when phase shift is 0

Waves remain in phase with shift of 1λ , 2λ ... $m\lambda$

<u>Constructive</u> interference – waves combine to give larger wave

Superposition of waves

Two waves are *out of phase* when phase shift is $\lambda/2$

With phase shift of $\frac{1}{2}\lambda$, $\frac{1}{2}\lambda$, $\frac{2}{2}\lambda$... $(m + \frac{1}{2})\lambda$, waves are out of phase

<u>Destructive</u> interference – waves combine to give no wave

ACT: Superposition of waves

What kind of interference do these two waves produce?

A. Constructive

B. Destructive

C. Neither

Demo: Interference for sound

Pair of speakers driven in phase, produce a tone of single f and λ :

Key is path difference between two waves $|r_1 - r_2|$

ACT: Sound interference

Two speakers are set up in a room and emit a single 680 Hz tone in phase.

If you stand a distance r_1 = 4 m from one speaker and r_2 = 5 m from the other, how will the sound waves interfere?

A. Constructive

B. Destructive

C. Neither

Two-wave interference pattern

Interference depends on waves traveling different distances

Interference requirements

Interference is a property of waves. How do we get interference with light?

- Need two (or more) waves
- Must have same wavelength
- Must be coherent (waves must have definite phase relation)
- Use one light source with waves taking different paths:

Two slits

Two different refractive indices

Reflection off of two different surfaces

Recall: Huygens' Principle

Every point on a wavefront acts as a source of tiny spherical "wavelets" that spread outward

The shape of the wavefront at a later time is tangent to all the wavelets

Phys. 102, Lecture 17, Slide 11

Young's double slit

Coherent, monochromatic light passes through two narrow slits

Young's double slit

Consider the interference pattern from a double slit on a screen

 $d\sin\theta_m = (m + \frac{1}{2})\lambda$

Destructive:

Phys. 102, Lecture 22, Slide 13

CheckPoint 1.1

Now, the light coming to the lower slit has its phase shifted by $\frac{1}{2}\lambda$ relative to the light coming to the top slit. Compared to the usual Young's experiment, what happens?

- A. The pattern is the same
- B. Maxima & minima become minima & maxima

Checkpoint 1.2

In the Young's double slit experiment, is it possible to see interference maxima when the distance d between slits is less than the wavelength of light λ ?

A. Yes B. No

ACT: Interference & intensity

The two waves are interfering constructively at the point shown. If the intensity of each is I_0 , what is the total intensity on screen?

ACT: CheckPoint 2.1

When this Young's double slit experimental setup is placed under water, the separation y between minima and maxima:

- A. Increases
- B. Remains the same
- C. Decreases

Calculation: Young's double slit

Light of wavelength $\lambda = 650$ nm passes through two narrow slits separated by d = 0.25 mm. Determine the spacing y between the 0th and 3nd order bright fringe on a screen L = 2m away.

Since L >> d, angles θ_m are small: $\theta \approx \sin \theta \approx \tan \theta$

$$y \approx m \frac{\lambda L}{d}$$

ACT: CheckPoint 3.1

Light is incident on three evenly separated slits. If wave 1 and 2 interfere <u>constructively</u> at angle θ , what appears on the screen?

- A. Interference maximum
- B. Interference minimum
- C. Somewhere in between

Phys. 102, Lecture 22, Slide 19

ACT: CheckPoint 3.3

Light is incident on three evenly separated slits. If wave 1 and 2 interfere <u>destructively</u> at angle θ , what appears on the screen?

- A. Interference maximum
- B. Interference minimum
- C. Somewhere in between

Phys. 102, Lecture 22, Slide 20

Interference pattern vs. slit number

As number of slits N increases (d remaining the same) angles for interference maxima are unaffected: $d \sin \theta_m = m\lambda$

As N increases, more minima appear and bright fringes narrow

Diffraction grating

A diffraction grating has a large number N (>100) of evenly spaced slits

Ex: 1/d = 500 lines/mm

$$d\sin\theta_m = m\lambda$$

Used in spectroscopy – analysis of absorption/emission spectra

ACT: Diffraction grating

White light passes through a diffraction grating and is projected on a screen. Which diagram most accurately represents the pattern on the screen?

DEMO

Summary of today's lecture

Constructive vs. destructive interference

Constructive if waves are in phase (phase shift = 0, λ , 2λ ...) Destructive if waves are out of phase (phase shift = $\frac{1}{2}\lambda$, $\frac{1}{2}\lambda$...)

• Two slit interference Key is path length difference

Interference maxima: $d \sin \theta_m = m\lambda$

Interference minima: $d \sin \theta_m = (m + \frac{1}{2})\lambda$

Multiple slit interference

Interference maxima: $d \sin \theta_m = m\lambda$