

Phys 102 – Lecture 19

Refraction & lenses

Today we will...

Review refraction

Snell's law

Learn applications of refraction

Total internal reflection

Converging & diverging lenses

Learn how lenses produce images

Ray diagrams – principal rays

Lens & magnification equations

Review: Snell's Law

Light bends when traveling into material with different *n*

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

If $n_1 > n_2$ then $\theta_2 > \theta_1$

Light bends <u>away</u> from normal as it goes into a medium with <u>lower</u> *n*

Phys. 102, Lecture 19, Slide 3

Total internal reflection

From Snell's law, if $n_1 > n_2$ then $\theta_2 > \theta_1$

$$n_1 \sin \theta_c = n_2 \sin 90^\circ$$
 So, $\theta_c = \sin^{-1} \frac{n_2}{n_1}$

Calculation: underwater view

Explain why the diver sees a circle of light from outside surrounded by darkness

$$\theta_c = \sin^{-1} \frac{n_{air}}{n_{water}}$$

ACT: CheckPoint 1.1

Can the person standing on the edge of the pool be prevented from seeing the light by <u>total internal reflection</u>?

A. Yes B. No

Fiber Optics

Optical fibers consist of "core" surrounded by "cladding" with $n_{cladding} < n_{core}$. Light hits core-cladding interface at $\theta_i > \theta_c$, undergoes total internal reflection and stays in the fiber.

- Telecommunication
- Arthroscopy
- Laser surgery

Only works if

 $n_{cladding} < n_{core}$

Phys. 102, Lecture 19, Slide 7

Converging lens

Lenses use refraction and curved surface(s) to bend light in useful ways

Converging lens – rays || to p.a. refract through focal point f after lens

CheckPoint 2.1

A beacon in a lighthouse produces a parallel beam of light. The beacon consists of a bulb and a converging lens. Where should

the bulb be placed?

- A. At *f*
- B. Inside *f*
- C. Outside *f*

Diverging lens

Lenses use refraction and curved surface(s) to bend light in useful ways

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
 If $n_1 > n_2$ then $\theta_2 > \theta_1$

Diverging lens – rays || to p.a. reflect as if they originated from focal point f before lens

Converging & diverging lenses

Converging lens:

Rays parallel to p.a. converge on focal point after lens

Converging = thick in the middle

Diverging lens:

Rays parallel to p.a. diverge as if originating from focal point before lens

Diverging = thin in the middle

Phys. 102, Lecture 19, Slide 11

ACT: Lens geometry

The following lenses are all made from the same material but have different geometry

Which lens has the shortest (positive) focal length?

ACT: CheckPoint 3.1

A glass converging lens placed in air has focal length f.

Now the lens is placed in water. Its focal length:

- A. Stays the same
- B. Increases
- C. Decreases

Images & lenses

Like mirrors, lenses produce images of objects

Key approaches:

- Ray diagrams
- Thin lens & magnification equations

Principal rays - converging lens

Ray from object traveling:

- 1) parallel to principal axis, refracts through *f*
- 2) through f, refracts parallel to principal axis
- 3) through *C*, travels straight

Real (light rays cross)
Inverted (opposite direction as object)
Reduced (smaller than object)

Phys. 102, Lecture 19, Slide 15

Principal rays – diverging lens

Ray from object traveling:

- 1) parallel to principal axis, refracts through *f*
- 2) through f, refracts parallel to principal axis
- 3) through *C*, travels straight

ACT: CheckPoint 4.1

A converging lens produces a real image onto a screen. A piece of black tape is then placed over the upper half of the lens.

Which of the following is true:

- A. Only the lower half of the object will show
- B. Only the upper half of the object will show
- C. The whole object will still show

Thin lens & magnification equations

Distance & magnification conventions

- d_o = distance object is from lens:
 - > 0: object before lens
 - < 0: object after lens
- d_i = distance image is from lens:
 - > 0: <u>real</u> image (after lens)
 - < 0: virtual image (before lens)
- *f* = focal length lens:
 - > 0: converging lens
 - < 0: <u>diverging</u> lens

Note similarities to mirror conventions

- h_o = height of object:
 - > 0: always
- h_i = height of image:
 - > 0: image is <u>upright</u>
 - < 0: image is inverted
- |m| = magnification:
 - < 1: image is reduced
 - > 1: image is enlarged

3 cases for concave mirrors

Object is:

Past 2*f*:

Image is:

Inverted: $h_i < 0$

Reduced: m < 1

Real: $d_i > 0$

Between 2f & f:

$$f < d_o < 2f$$

Inverted: $h_i < 0$

Enlarged: m > 1

Real: $d_i > 0$

Inside *f*:

Upright: $h_i > 0$

Enlarged: m > 1

Virtual: $d_i < 0$

DEMO

Phys. 102, Lecture 19, Slide 20

ACT: Converging Lens

A candle is placed in front of a converging lens. The lens produces a well-focused image of the flame on a screen a distance d_i away.

If the candle is moved <u>farther</u> away from the lens, how should the screen be adjusted to keep a well-focused image?

- A. Closer to lens
- B. Further from lens
- C. At the same place

Calculation: diverging lens

A 6-cm tall candle is placed 12 cm in front of a *diverging* lens with a focal length f = -6 cm. Determine the image location, size, and whether it is upright or inverted

$$\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o}$$

$$m = -\frac{d_i}{d_o}$$

$$h_i = mh_o$$

ACT: Diverging Lenses

Where in front of a diverging lens should you place an object

so the image is *real*?

- A. Closer to lens
- B. Further from lens
- C. Diverging lens can't create real image

Summary of today's lecture

- Total internal reflection
- Lenses principal rays

Parallel to p.a. -> refracts through *f*

Through f -> refracts parallel to p.a.

Through *C* -> straight through

Thin lens & magnification equations

Numerical answer consistent with ray diagram

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \qquad m \equiv \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$