

Phys 102 – Lecture 18

Spherical mirrors

Today we will...

Learn about spherical mirrors

Concave mirrors

Convex mirrors

Learn how spherical mirrors produce images

Ray diagrams – principal rays

Mirror & magnification equations

Curved mirrors

Spherical mirror – section of a sphere

Concave mirror reflection

Concave mirror – rays || to p.a. reflect through focal point f in front of mirror

Convex mirror reflection

Convex mirror – rays || to p.a. reflect as if they originated from focal point f <u>behind</u> mirror

ACT: CheckPoint 1.1 & 1.2

What kind of mirror can be used to start a fire?

- A. Concave
- B. Convex
- C. Plane

How far from the object to be ignited should the mirror be held?

- A. farther than the focal length
- B. closer than the focal length
- C. at the focal length

Lighting a match

DEMO

Rays traveling through focus before hitting mirror are reflected parallel to Principal Axis.

Rays traveling parallel to Principal Axis before hitting mirror are reflected through focus

Images & spherical mirrors

Like plane mirrors, spherical mirrors produce images of objects

Key approaches:

- Ray diagrams
- Mirror & magnification equations

Principal rays – concave mirror

Ray from object traveling:

- 1) parallel to principal axis, reflects through *f*
- 2) through f, reflects parallel to principal axis
- 3) through *C*, reflects through *C*

Image is:

Real (light rays cross)
Inverted (opposite direction as object)
Reduced (smaller than object)

Principal rays – convex mirror

Ray from object traveling:

- 1) parallel to principal axis, reflects through *f*
- 2) through f, reflects parallel to principal axis

ACT: Image formation

The diagram below shows the object and image, and one ray from the object

Which arrow most accurately represents how the ray is reflected?

- A. 1
- B. 2
- C. 3

ACT: CheckPoint 2.1

In the ray diagram below, which ray is NOT correct?

A. 1

B. 2

C. 3

Optical illusion

Two identical concave mirrors

Each mirror is positioned at the focal point of the other

Mirror & magnification equations

Distance & magnification conventions

- d_o = distance object is from mirror:
 - > 0: object in front of mirror
 - < 0: object behind mirror
- d_i = distance image is from mirror:
 - > 0: <u>real</u> image (in front of mirror)
 - < 0: virtual image (behind mirror)
- *f* = focal length mirror:
 - > 0: concave mirror +R/2
 - < 0: convex mirror –R/2

- h_o = height of object:
 - > 0: always
- h_i = height of image:
 - > 0: image is <u>upright</u>
 - < 0: image is inverted
- |m| = magnification:
 - < 1: image is reduced
 - > 1: image is enlarged

Calculation: concave mirror

A 6-cm tall candle is placed 24 cm in front of a *concave* mirror with a focal length f = +8 cm. Determine the image location, size, and whether it is upright or inverted

$$\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o}$$

$$m = -\frac{d_i}{d_o}$$

$$h_i = mh_o$$

ACT: Plane mirror

Concave mirrors have f > 0 and convex mirrors have f < 0

What is the focal length *f* of a plane mirror?

A.
$$f = 0$$

B.
$$f = \infty$$

Checkpoint 3.1

The image produced by a *concave* mirror of a real object is:

- A. Always Real
- B. Always Virtual
- C. Sometimes Real, Sometimes Virtual

ACT: Concave Mirror

Where in front of a concave mirror should you place an object so that the image is *virtual*?

- A. Closer than the focal length
- B. Farther than the focal length
- C. Either close or far
- D. Not Possible

3 cases for concave mirrors

Object is: Image is:

Inside *f*: Upright: $h_i > 0$ $d_o < f$

Enlarged: m > 1

Virtual: $d_i < 0$

Between *C* & *f*:

 $f < d_o < R$

Inverted: $h_i < 0$

Enlarged: m > 1

Real: $d_i > 0$

Past C:

 $R < d_o$

Inverted: $h_i < 0$

Reduced: m < 1

Real: $d_i > 0$

DEMO

Phys. 102, Lecture 18, Slide 20

Calculation: convex mirror

A 6-cm tall candle is placed 12 cm in front of a *convex* mirror with a focal length f = -6 cm. Determine the image location, size, and whether it is upright or inverted

$$\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o}$$

$$m = -\frac{d_i}{d_o}$$

$$h_i = mh_o$$

Checkpoint 3.2

The image produced by a convex mirror of a real object is

- A. always real
- B. always virtual
- C. sometimes real and sometimes virtual

ACT: Convex mirror image

An object placed in front of a *convex* mirror will _____ produce an *upright* image

- A. Always
- B. Sometimes
- C. Never

Summary of today's lecture

- Curved mirrors
- Principal rays method for images

Parallel to p.a. -> reflects through *f*

Through $f \rightarrow$ reflects parallel to p.a.

Through C -> reflects back through C

Mirror & magnification equations

Numerical answer consistent with ray diagram

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \qquad m \equiv \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$