

Phys 102 – Lecture 15

Electromagnetic waves

Today we will...

Introduce/review several key concepts

Changing B field generates E field

Changing *E* field generates *B* field

E and B field propagate in space at finite speed

Learn about electromagnetic waves

Relationship between E and B fields in EM waves

Properties of waves & spectrum of light

Learn applications

Antennas

Doppler effect

EM induction revisited

By Lenz's law, if *B* field from solenoid increases, a clockwise current flows around loop. What drives current around loop?

Changing B field generates a E field

Changing E field creates B field?

Imagine two wires connected to a capacitor. Current drives charge on capacitor plates, increasing *E* field between plates.

Changing *E* field generates a *B* field

ACT: E fields create B fields

What are the *E* & *B* field magnitudes around the wires and capacitor plates after a <u>long time</u> charging?

A.
$$|E| > 0$$
, $|B| > 0$

B.
$$|E| = 0$$
, $|B| = 0$

C.
$$|E| = 0$$
, $|B| > 0$

D.
$$|E| > 0$$
, $|B| = 0$

Maxwell's equations

4 laws unify electricity & magnetism:

- E field generated by electric charge (Gauss' Law – Lecture 3)
- 2. No magnetic charge

(Lecture 10)

- 3. *E* field generated by changing magnetic flux (Faraday's Law Lecture 14)
- 4. *B* field generated by moving electric charge& changing electric flux

(Ampere-Maxwell Law – Lecture 12 & 15)

Electromagnetic waves

To recap:

- 3. Changing B field creates E field (even in absence of charges)
- 4. Changing E field creates B field (even in absence of currents)

It should be possible to establish a <u>self-sustaining</u> E and B field in empty space. Don't need charges or currents!

This is achieved by <u>electromagnetic waves</u> (light!): oscillating *E* and *B* field propagating in space and time

Antennas

Electric dipole antennas create oscillating E fields by oscillating
 + and – charge Oscillating E field generates oscillating B field

Electromagnetic radiation

Antenna generates oscillating *E* and *B* fields. Look along *y* axis:

CheckPoint 1.1-1.4: EM waves

- EM wave can propagate in vacuum at speed v = c
 No charges or current loops necessary for propagation
- f and λ of EM wave are related $c = \lambda f$
- E and B oscillate <u>in phase</u> and are proportional E & B field increase and decrease at same times E = cB
- E and B are \perp to each other and propagation direction

Right hand rule: Thumb along \vec{v}

Fingers along $ec{E}$

Out of palm \vec{B}

ACT: CheckPoint 2

An EM wave propagates along +z. At a point P, the E field

points along +y.

In which direction does the *B* field point at *P*?

A. Along +x B. Along -x C. Along +z D. Along -z

ACT: magnetic dipole antenna

Another way to generate an EM wave is to oscillate *current* around a loop. This is called a *magnetic dipole antenna*.

In which direction do the *E* and *B* fields oscillate at point *P*?

- A. B along z, E along x
- B. B along x, E along y
- C. B along y, E along z

Speed of EM wave

Recall fundamental constants of electricity and magnetism:

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$$

$$\mu_0 = 4\pi \times 10^{-7} \frac{Tm}{A}$$

"Permittivity of free space" (electricity) "Permeability of free space" (magnetism)

Now multiply them:

$$\varepsilon_0 \mu_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2} \cdot 4\pi \times 10^{-7} \frac{Tm}{A}$$
$$= 1.11 \times 10^{-17} \frac{s^2}{m^2}$$

Speed of light in a vacuum
$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 3.0 \times 10^8 \frac{m}{s}$$

Electromagnetic spectrum

Radio waves, visible light, x-rays, etc. are <u>all</u> electromagnetic waves

ACT: Supernova

A distant star goes supernova and emits in the X-ray ($\lambda = 10$ nm) and infrared ($\lambda = 3000$ nm) regions of the EM spectrum.

Which light reaches the earth first?

- A. X-ray B. Infrared

C. Both arrive at the same time

Calculation: EM wavelength

The U of I radio station is WPGU 107.1 FM. At what wavelength does the station broadcast its radio waves?

 $107.1 \text{ FM} = 107.1 \text{ MHz} = 107.1 \times 10^6 \text{ cycles/s}$

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{107.1 \times 10^6} = 2.8 \,\mathrm{m}$$

For comparison, cell phones typically operate at 1.9 GHz

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{1.9 \times 10^9} = 16 \text{ cm}$$

Representing EM waves

This picture represents EM wave along one line only (y-axis) What about the rest of space?

Wavefront = surfaces at crests of EM wave

ACT: Plane wave

Consider the plane EM wave below. Which of the following statements about the *E* field are TRUE?

- A. E is the same at point P_1 , P_2 , and P_3
- B. E = 0 at point P_2
- C. E = 0 at point P_1 and P_3

Doppler effect

Now the police car moves to the left. The observed wavelength λ_{obs}

is different

Emitter moving <u>toward</u> observer: $v_{rel} > 0$, $\lambda_{obs} < \lambda_{emit}$, $f_{obs} > f_{emit}$

Emitter moving <u>away</u> from observer: $v_{rel} < 0$, $\lambda_{obs} > \lambda_{emit}$, $f_{obs} < f_{emit}$

$$f_{obs} = f_{emit} \sqrt{\frac{1 + v_{rel} / c}{1 - v_{rel} / c}} \approx f_{emit} \left(1 + v_{rel} / c\right) \text{ If } v_{rel} << c$$
 Observed frequency Emitted Speed relative to frequency observer

ACT: Doppler effect

You are driving at 85 mph along Highway 57. A police car is chasing you down at 100 mph.

In your rearview mirror, the frequency of the light from the police car siren appears:

A. Higher (more blue) B. Lower (more red)

Doppler velocimetry

Technique uses Doppler shift of EM wave in moving source to determine speed of source

Summary of today's lecture

Electromagnetic waves

Changing B field generates E field

Changing E field generates B field

E and B field propagate in space at speed of light c

Properties of electromagnetic waves

Wavelength and frequency are related by $c = \lambda f$

E and *B* fields are always \perp each other & propagation direction

E and B fields always oscillate in phase & E = cB