Physics 101: Lecture 28 Thermodynamics

Heat Transfer: Radiation

- All things radiate electromagnetic energy
 - \rightarrow $H_{emit} = Q/t = eA\sigma T^4$
 - e = emissivity (between 0 and 1)
 - perfect "black body" has e = 1
 - » T is temperature of object in Kelvin
 - $\sigma = \text{Stefan-Boltzmann constant} = 5.67 \times 10^{-8} \, \text{J/s-m}^2 \text{K}^4$
 - → No "medium" required

DEMO

Surroundings at T₀

Hot stove

- All things absorb energy from surroundings
 - \rightarrow H_{absorb} = eA σ T₀⁴
 - T_0 is temperature of surroundings in Kelvin
 - » good emitters (e close to 1) are also good absorbers

Heat Transfer: Radiation

All things radiate and absorb electromagnetic energy

$$\rightarrow H_{emit} = eA\sigma T^4$$

 \rightarrow H_{absorb} = eA σ T₀⁴

Surroundings at T_0 T Hot stove

$$\rightarrow$$
 $H_{net} = H_{emit} - H_{absorb} = eA\sigma(T^4 - T_0^4)$

- » if $T > T_0$, object cools down
- » if $T < T_0$, object heats up

Checkpoint from Last Wed

A volume of N_2 is compressed through three processes as shown. Which process has the greatest decrease in the average kinetic energy of the molecules?

A. a to d B. b to d C. c to d

First Law of Thermodynamics = Energy Conservation

The change in internal energy of a system (ΔU) is equal to the heat flow into the system (\mathbb{Q}) minus the work done by the system (\mathbb{W})

Signs Example

- You are heating some soup in a pan on the stove. To keep it from burning, you also stir the soup. Apply the 1st law of thermodynamics to the soup. What is the sign of (A=Positive B= Zero C=Negative)
 - 1) Q
 - 2) W
 - 3) ΔU

Work Done by a System Clicker Q

The work done by the gas as it contracts is

- A) Positive
- B) Zero

C) Negative

W = (work done by system) = F d = P A d = P Δ V = P(V_f - V_i)

Thermodynamic Systems and P-V Diagrams

- ideal gas law: PV = nRT
- for n fixed, P and V determine "state" of system

$$\rightarrow$$
T = PV/nR

$$\rightarrow$$
 U = $(3/2)$ nRT = $(3/2)$ PV

- Examples (Clicker Qs):
 - → which point has highest T?

→ which point has lowest U?

→ to change the system from C to B, energy must be added to system

Checkpoint from Last Wed.

$$\Delta U = Q - W$$

- A cylinder that has a piston contains one mole of H₂ and undergoes an expansion that doubles the initial volume of the gas. How much heat is transferred to or from the gas? (assume constant P)
 - 1) Heat flows into gas by amount greater than W
- 2) Heat flows into gas by amount less than W
- 3) Heat flows out of gas by amount greater than W
- 4) Heat flows out of gas by amount less than W

First Law of Thermodynamics Isobaric Example

2 moles of monatomic ideal gas is taken from state 1 to state 2 at constant pressure p=1000 Pa, where V_1 =2 m^3 and V_2 =3 m^3 . Find T_1 , T_2 , ΔU , W, Q. (R=8.31 J/k mole)

1.
$$PV_1 = nRT_1 \implies T_1 = PV_1/nR = 120K$$

2.
$$PV_2 = nRT_2 \Rightarrow T_2 = PV_2/nR = 180K$$

3.
$$\Delta U = (3/2) \text{ nR } \Delta T = 1500 \text{ J}$$

 $\Delta U = (3/2) \text{ p } \Delta V = 1500 \text{ J (has to be the same)}$

4. W = p
$$\Delta$$
V = 1000 J

5.
$$Q = \Delta U + W = 1500 + 1000 = 2500 J$$

First Law of Thermodynamics Isochoric Example

2 moles of monatomic ideal gas is taken from state 1 to state 2 at constant volume $V=2m^3$, where $T_1=120K$ and $T_2=180K$. Find Q.

1.
$$Q = \Delta U + W$$

2.
$$\Delta U = (3/2) \text{ nR } \Delta T = 1500 \text{ J}$$

4.
$$Q = \Delta U + W = 1500 + 0 = 1500 J$$

Comparing it to last slide where we had a constant pressure process (and same T_1 & T_2): Less heat is required to raise T at const. volume than at const. pressure

WORK Clicker Q

If we go through the cycle (4,3,2,1,4) the net work done **on** the system will be

A) Positive

B) Negative

How would answers above change if we go in the opposite direction: 4,1,2,3,4?

PV Clicker Qs

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the work done by the system the biggest?

- A. Case 1
- B. Case 2
- C. Same

PV Clicker 2

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the change in internal energy of the system the biggest?

- A. Case 1
- B. Case 2
- C. Same

PV Clicker 3

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the heat added to the system the biggest?

- A. Case 1
- B. Case 2
- C. Same

First Law Questions

- Which part of cycle has largest magnitude change in internal energy, ΔU ?
 - $2 \rightarrow 3$ (since $\Delta U = 3/2 (p_3 V_3 p_2 V_2) = 3/2 nR \Delta T$)
- Which part of cycle involves the most work done by system?
 - $1 \rightarrow 2$ is most (positive), $3 \rightarrow 1$ is 0, $2 \rightarrow 3$ is negative. Net W is POSITIVE
- What is change in internal energy for full cycle?
 - $\Delta U = 0$ for closed cycle (since both p & V [and T] are back where they started)
- What is net heat into system for full cycle (positive or negative)?

$$\Delta U = 0 \Rightarrow Q = W = \text{area of triangle (>0)}$$

Special PV Cases

Constant Pressure (isobaric)

Constant Volume (isochoric)

• Constant Temp $\Delta U = 0$ (isothermal)

Adiabatic Q=0

Reversible?

 Most "physics" processes are reversible: you could play movie backwards and still looks fine. (drop ball vs throw ball up)

- Exceptions:
 - → Non-conservative forces (friction)
 - → Heat Flow:
 - » Heat never flows spontaneously from cold to hot

Summary:

→ 1st Law of Thermodynamics: Energy Conservation

 $\Delta U = Q - W$ Work done by system
(Negative of work done on the gas)
(Depends only on Temperature)

Heat flow into system $P \blacktriangle$

- point on p-V plot completely specifies state of system (pV = nRT)
- work done is area under curve
- U depends only on T (U = 3nRT/2 = 3pV/2)
- for a complete cycle $\Delta U=0 \Rightarrow Q=W$

