Physics 101: Lecture 23
 Sound

Exam Results

Standing Waves Fixed Endpoints

- Fundamental $\mathrm{n}=1$ (2 nodes)

Fundamental, or first harmonic

- $\lambda_{\mathrm{n}}=2 \mathrm{~L} / \mathrm{n}$

- $\mathrm{f}_{\mathrm{n}}=\mathrm{n} \mathrm{v} /(2 \mathrm{~L})$

Standiing Waves Example

$L=\lambda / 2$

A guitar's E-string has a length of 65 cm and is stretched to a tension of 82 N . If it vibrates with a fundamental frequency of 329.63 Hz , what is the mass of the string?

$$
\begin{aligned}
& v=\sqrt{\frac{T}{\mu}} \quad f=v / \lambda \text { tells us } v \text { if we know } f \text { (frequency) and } \lambda \text { (wavelength) } \\
& \qquad \begin{aligned}
v & =\lambda \mathrm{f} \\
& =2(0.65 \mathrm{~m})\left(329.63 \mathrm{~s}^{-1}\right) \\
& =428.5 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
& \begin{array}{ll}
\mathrm{v}^{2} & =\mathrm{T} / \mu \\
\mu & =\mathrm{T} / \mathrm{v}^{2} \\
\mathrm{~m} & =\mathrm{T} \mathrm{~L} / \mathrm{v}^{2} \\
& =82(0.65) /(428.5)^{2} \\
& =2.9 \times 10^{-4} \mathrm{~kg}
\end{array}
\end{aligned}
$$

Standing Waves in Pipes

A pressure node is where pressure is normal (open to atmosphere) NOTE: A pressure node corresponds to a displacement antinode and A pressure antinode corresponds to a displacement node

Open at both ends:

 Pressure Node at end$$
\lambda=2 \mathrm{~L} / \mathrm{n} \quad \mathrm{n}=1,2,3 . .
$$

Open at one end:
Pressure AntiNode at closed end : $\lambda=4 \mathrm{~L} / \mathrm{n}$

n odd

Standing Waves in Pipes

A pressure node is where pressure is normal (open to atmosphere) NOTE: A pressure node corresponds to a displacement antinode and A pressure antinode corresponds to a displacement node

Open at both ends: Pressure Node at end

$$
\lambda=2 \mathrm{~L} / \mathrm{n} \quad \mathrm{n}=1,2,3 . .
$$

Pressure variations

Open at one end:
Pressure AntiNode at closed end : $\lambda=4 \mathrm{~L} / \mathrm{n}$

Organ Pipe Standiing Wave Example

A 0.9 m organ pipe (open at both ends) is measured to have its second harmonic at a frequency of 382 Hz . What is the speed of sound in the pipe?

Note: fundamental, $\mathrm{n}=1$, has a wavelength of $\lambda=2 \mathrm{~L}$

Pressure Node at each end.

$\lambda=2 \mathrm{~L} / \mathrm{n} \mathrm{n}=1,2,3$.
$\lambda=\mathrm{L}$ for second harmonic ($\mathrm{n}=2$)
$\mathrm{v}=\mathrm{f} \lambda=\left(382 \mathrm{~s}^{-1}\right)(0.9 \mathrm{~m})$
$=343 \mathrm{~m} / \mathrm{s}$

Clicker Q

- What happens to the fundamental frequency of a pipe, if the air ($\mathrm{v}=343 \mathrm{~m} / \mathrm{s}$) is replaced by helium ($\mathrm{v}=972 \mathrm{~m} / \mathrm{s}$)?

1) Increases 2) Same 3) Decreases

Speed of Sound

- Recall for pulse on string: $\mathrm{v}=\operatorname{sqrt}(\mathrm{T} / \mu)$
- For fluids:

$$
\mathrm{v}=\operatorname{sqrt}(\mathrm{B} / \rho)
$$

$\mathrm{B}=$ bulk modulus

Medium	Speed $(\mathrm{m} / \mathrm{s})$
Air	343
Helium	972
Water	1500
Steel	5600

Frequency Clicker Q

A sound wave having frequency f_{0}, speed v_{0} and wavelength λ_{0}, is traveling through air when in encounters a large helium-filled balloon. Inside the balloon the frequency of the wave is f_{1}, its speed is v_{1}, and its wavelength is λ_{1} Compare the frequency of the sound wave inside and outside the balloon

1. $\mathrm{f}_{1}<\mathrm{f}_{0}$
2. $f_{1}=f_{0}$
3. $\mathrm{f}_{1}>\mathrm{f}_{0}$

Velocity Clicker Q

A sound wave having frequency f_{0}, speed v_{0} and wavelength λ_{0}, is traveling through air when in encounters a large helium-filled balloon. Inside the balloon the frequency of the wave is f_{1}, its speed is v_{1}, and its wavelength is λ_{1} Compare the speed of the sound wave inside and outside the balloon

1. $\mathrm{v}_{1}<\mathrm{v}_{0}$
2. $\mathrm{v}_{1}=\mathrm{v}_{0}$
3. $\mathrm{v}_{1}>\mathrm{v}_{0}$

Wavelength Clicker Q

A sound wave having frequency f_{0}, speed v_{0} and wavelength λ_{0}, is traveling through air when in encounters a large helium-filled balloon. Inside the balloon the frequency of the wave is f_{1}, its speed is v_{1}, and its wavelength is λ_{1} Compare the wavelength of the sound wave inside and outside the balloon

1. $\lambda_{1}<\lambda_{0}$
2. $\lambda_{1}=\lambda_{0}$
3. $\lambda_{1}>\lambda_{0}$

Intensity and Loudness

- Intensity is the power per unit area of a sound.
$\rightarrow \mathrm{I}=$ Power / A
\rightarrow Units: $(\mathrm{J} / \mathrm{s}) / \mathrm{m}^{2}\left(=\right.$ Watts $\left./ \mathrm{m}^{2}\right)$
- Loudness (Decibels): We hear "loudness" not intensity, and loudness is a logarithmic scale.
\rightarrow Loudness perception is logarithmic
\rightarrow Threshold for hearing $\mathrm{I}_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ (defined as 0 dB)
\rightarrow Threshold for pain $\mathrm{I}=10^{0} \mathrm{~W} / \mathrm{m}^{2}=1 \mathrm{~W} / \mathrm{m}^{2}(=120 \mathrm{~dB})$
This is a huge range: 12 orders of magnitude (12 powers of 10)
$\rightarrow \beta=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I} / \mathrm{I}_{0}\right)$
$\rightarrow \beta_{2}-\beta_{1}=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)$

$\log _{10}$ Review

- $\log _{10}(1)=0$
- $\log _{10}(10)=1$

$$
\begin{aligned}
& \beta=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I} / \mathrm{I}_{0}\right) \\
& \beta_{2}-\beta_{1}=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)
\end{aligned}
$$

- $\log _{10}(100)=2$
- $\log _{10}(1,000)=3$
- $\log _{10}(10,000,000,000)=10$
- $\log _{10}(2)=0.3$
- $\log (a b)=\log (a)+\log (b)$
- $\log (a / b)=\log (a)-\log (b)$
- $\log _{10}(100)=\log _{10}(10)+\log _{10}(10)=2$

Intensity and Loudness

- Intensity is the power per unit area of a sound.
$\rightarrow \mathrm{I}=$ Power / A
\rightarrow Units: $(\mathrm{J} / \mathrm{s}) / \mathrm{m}^{2}\left(=\right.$ Watts $\left./ \mathrm{m}^{2}\right)$
- Loudness (Decibels): We hear "loudness" not intensity, and loudness is a logarithmic scale.
\rightarrow Loudness perception is logarithmic
\rightarrow Threshold for hearing $\mathrm{I}_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ (defined as 0 dB)
\rightarrow Threshold for pain $\mathrm{I}=10^{0} \mathrm{~W} / \mathrm{m}^{2}=1 \mathrm{~W} / \mathrm{m}^{2}(=120 \mathrm{~dB})$
This is a huge range: 12 orders of magnitude (12 powers of 10)
$\rightarrow \beta=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I} / \mathrm{I}_{0}\right)$
$\rightarrow \beta_{2}-\beta_{1}=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)$

Decibels Clicker Q

- If 1 person can shout with loudness 50 dB. How loud will it be when 100 people shout? Assume $\mathrm{I}_{100}=100 \mathrm{I}_{1}$

\author{

1) 52 dB
 2) 70 dB
 3) 150 dB
}

Intensity Clicker Q

- Recall Intensity $=$ Power/A. If you are standing 6 meters from a speaker, and you walk towards it until you are 3 meters away, by what factor has the intensity of the sound increased?

$$
\text { 1) } 2 \text { 2) } 4 \quad \text { 3) } 8
$$

Interference and Superposition

Constructive interference

Destructive interference

Superposition \& Interference

- Consider two harmonic waves A and B meeting at $x=0$.
\rightarrow Same amplitudes, but $\omega_{2}=1.15 \times \omega_{1}$.
- The displacement versus time for each is shown below:

What does $C(t)=A(t)+B(t)$ look like??

Superposition \& Interference

- Consider two harmonic waves A and B meeting at $x=0$.
\rightarrow Same amplitudes, but $\omega_{2}=1.15 \times \omega_{1}$.
- The displacement versus time for each is shown below:

Beats

- Can we predict this pattern mathematically?
\rightarrow Of course!
- Just add two cosines and remember the identity:

$$
A \cos \left(\omega_{1} t\right)+A \cos \left(\omega_{2} t\right)=2 A \cos \left(\omega_{L} t\right) \cos \left(\omega_{H} t\right)
$$

$$
\text { where } \omega_{L}=\frac{1}{2}\left(\omega_{1}-\omega_{2}\right) \text { and } \omega_{H}=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right)
$$

Checkpoint 2

A clarinet behaves like a pipe in which one end is closed and the other is open to the air. When a musician blows air into the mouthpiece and causes air in the tube of the clarinet to vibrate, the waves set up by the vibration create the displacement pattern of the third harmonic represented in the figure. Set $\mathrm{x}=0$ at the open end of the tube.
The antinodes (locations of maxima) of the pressure variation of the sound waves are located at:
A) $x=0, x=L / 3, x=2 L / 3$, and $x=L$
B) $x=0$
C) $x=0$ and $x=2 L / 3$
D) $x=L / 3$ and $x=L$
E) None of the above

Summary

- Speed of sound $\mathrm{v}=\operatorname{sqrt}(\mathrm{B} / \rho)$
- Intensity $\beta=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I} / \mathrm{I}_{0}\right)$
- Standing Waves
- Beats $\quad \omega_{L}=\frac{1}{2}\left(\omega_{1}-\omega_{2}\right)$

