
Physics 101: Lecture 29 Thermodynamics II: Engines & refrigerators

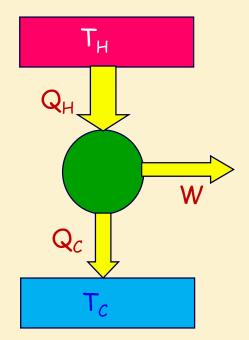
Recap:

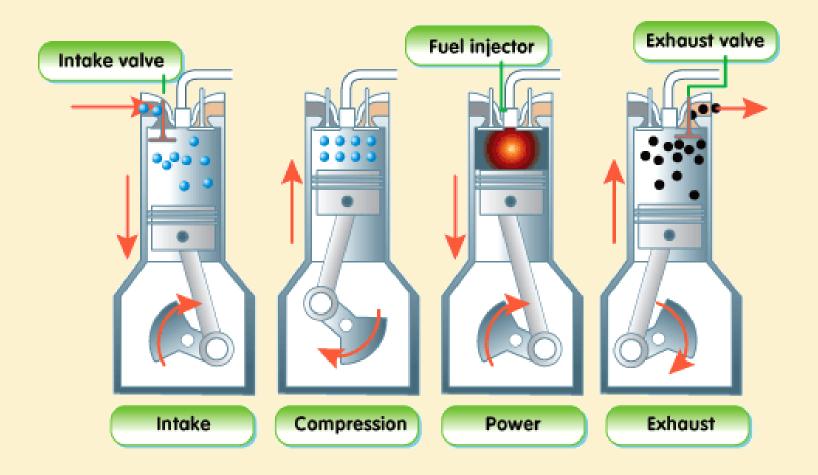
- U depends only on T (U = 3nRT/2 = 3PV/2)
- point on p-V plot completely specifies state of system (PV = nRT)
- work done is area under curve
- •for a complete cycle

 $\Delta U\text{=}0 \Rightarrow Q\text{=}W$

- system taken in closed cycle $\Rightarrow \Delta U_{system} = 0$
- therefore, net heat absorbed = work done by system

 $Q_H = Q_C + W_{net}$ (Engine) $Q_C + W_{net} = Q_H$ (Refrigerator) energy into green blob = energy leaving green blob


Heat Engine: Efficiency


- The objective: turn heat from hot reservoir into work
- The cost: "waste heat"
- 1st Law: $Q_H Q_C = W$

efficiency definition: $e \equiv W/Q_H$

- =W/Q_H
- $= (Q_H Q_C)/Q_H$
- $= 1 Q_C / Q_H$

HEAT ENGINE

Heat Engine Clicker Q

• Can you get "work" out of a heat engine, if the hottest thing you have is at room temperature?

1) Yes 2) No

Rate of Heat Exhaustion

An engine operating at 25% efficiency produces work at a rate of 0.10 MW. At what rate is heat exhausted into the surrounding?

Efficiency $e = W_{net}/Q_H = Q_H = W_{net}/e$

The question is asking for $Q_C / \Delta t$.

 $Q_{\rm H}/t = (W_{\rm net}/t)/e = 0.10 \text{ MW}/0.25 = 0.40 \text{ MW}$

From 1st Law of Thermo: $W_{net} = Q_H - Q_C$; divide by Δt : $W_{net}/\Delta t = (Q_H - Q_C)/\Delta t$ $0.10 \text{ MW} = 0.40 \text{ MW} - Q_C/\Delta t$ $Q_C/\Delta t = 0.40 \text{ MW} - 0.10 \text{ MW} = 0.3 \text{ MW}$

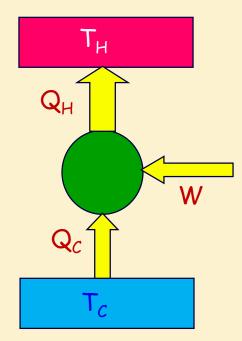
Refrigerator: Coefficient of Performance

The objective: remove heat from cold reservoir

The cost: work

1st Law: $Q_H = W + Q_C$

coefficient of performance


$$CP \equiv Q_C/W$$

 $= Q_C / (Q_H - Q_C)$

Best CP you can have is Carnot coeff. of performance (more on Carnot in 4 slides):

$$CP_{Carnot} = T_C / (T_H - T_C)$$

REFRIGERATOR

Entropy (S)

- A measure of "disorder" (more entropy means more disorder)
- A property of a system (just like P, V, T, U)
 - →related to number of number of different possible "states" of system
- Examples of increasing entropy:
 - \rightarrow ice cube melts
 - →gases expand into vacuum (recall demo of vacuum cannon)
- Change in entropy:
 - $\Rightarrow \Delta S = Q/T$
 - $\gg > 0$ if heat flows into system (Q > 0)
 - » < 0 if heat flows out of system (Q < 0)

Clicker Questions

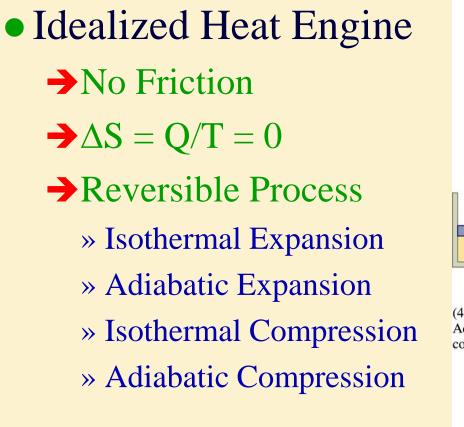
A hot (98 C) slab of metal is placed in a cool (5C) bucket of water.

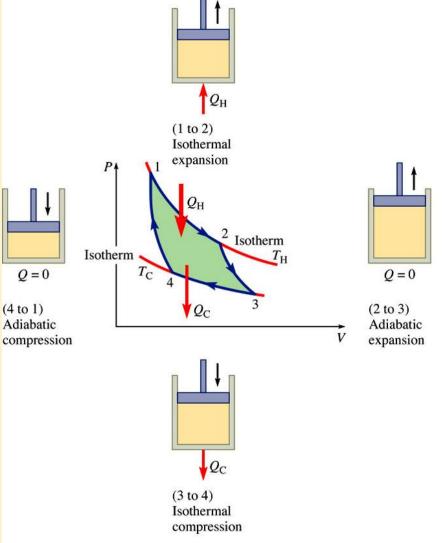
 $\Delta S = Q/T$

What happens to the entropy of the metal?A) IncreasesB) SameC) Decreases

What happens to the entropy of the water?A) IncreasesB) SameC) Decreases

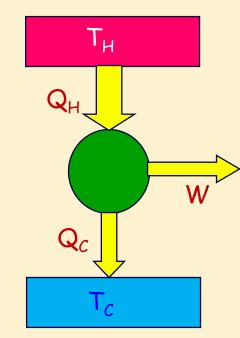
What happens to the total entropy (water+metal)?A) IncreasesB) SameC) Decreases


A word on the Checkpoint Q on mixing yellow and blue water


- Process is irreversible—the mixing creates a batch of green water that we cannot separate back into two batches of blue and yellow water, so entropy increases.
- Another way to look at it. Big batch of water has more space for molecules to move around than the two smaller batches so it is more disordered.
- Answers to Checkpoint: 1. A 2. D 3. A
- (To answer 3, use last equation is slide 8: "refrigerators" from the last prelecture, or last eqn on slide 8 in this lecture, to compare impact of raising T_C by 10 or lowering T_H by 10)

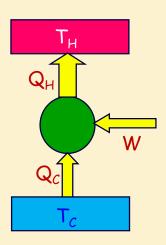
Second Law of Thermodynamics

- The entropy change (Q/T) of the system+environment ≥ 0
 - \rightarrow never < 0
 - ➔ order to disorder
- Consequences
 - → A "disordered" state cannot spontaneously transform into an "ordered" state
 - → No engine operating between two reservoirs can be more efficient than one that produces 0 change in entropy. This is called a "Carnot engine"


Carnot Cycle

Engines and the 2nd Law The objective: turn heat from hot reservoir into work The cost: "waste heat" 1st Law: $Q_H - Q_C = W$ efficiency $e \equiv W/Q_H = (Q_H - Q_C)/Q_H$ $\Delta S = Q_C/T_C - Q_H/T_H \ge 0$ $\Delta S = 0$ for Carnot Therefore, $Q_C/Q_H \ge T_C/T_H$ $Q_C/Q_H = T_C/T_H$ for Carnot Therefore e = 1 - $Q_C/Q_H \leq 1 - T_C/T_H$ $e = 1 - T_c / T_H$ for Carnot e = 1 is forbidden! e largest if $T_c \ll T_H$

HEAT ENGINE



Consider a hypothetical refrigerator that takes 1000 J of heat from a cold reservoir at 100K and ejects 1200 J of heat to a hot reservoir at 300K.

Answers:

200 J

- 1. How much work does the refrigerator do?
- 2. What happens to the entropy of the universe? Decreases
- 3. Does this violate the 2nd law of thermodynamics?

$$Q_c = 1000 J$$
 Since $Q_c + W = Q_H, W = 200 J$
 $Q_H = 1200 J$

 $\Delta S_{H} = Q_{H}/T_{H} = (1200 \text{ J}) / (300 \text{ K}) = 4 \text{ J/K}$ $\Delta S_{c} = -Q_{c}/T_{c} = (-1000 \text{ J}) / (100 \text{ K}) = -10 \text{ J/K}$

 $\Delta S_{TOTAL} = \Delta S_H + \Delta S_C = -6 \text{ J/K} \rightarrow \text{decreases (violates 2nd law)}$

Consider a hypothetical device that takes 1000 J of heat from a hot reservoir at 300K, ejects 200 J of heat to a cold reservoir at 100K, and produces 800 J of work.

Does this device violate <u>the second law</u> of thermodynamics ?

Yes correct
 No total entropy decreases.

 $\Delta S_{H} = Q_{H}/T_{H} = (1000 \text{ J}) / (300 \text{ K}) = 3.33 \text{ J/K}$ $\Delta S_{C} = Q_{C}/T_{C} = (200 \text{ J}) / (100 \text{ K}) = 2 \text{ J/K}$ $\Delta S_{TOTAL} = \Delta S_{C} - \Delta S_{H} = -1.33 \text{ J/K} \rightarrow \text{(violates 2^{nd} law)}$

- W (800) = Q_{hot} (1000) Q_{cold} (200)
- Efficiency = $W/Q_{hot} = 800/1000 = 80\%$
- Max eff = $1 T_c / T_h$ = 1 100/300 = 67%

Which of the following is forbidden by the second law of thermodynamics?

- 1. Heat flows into a gas and the temperature falls
- 2. The temperature of a gas rises without any heat flowing into it
- 3. Heat flows spontaneously from a cold to a hot reservoir
- 4. All of the above

- First Law of thermodynamics: Energy Conservation
 → Q = ∆U + W
- Heat Engines
 → Efficiency = = 1- Q_C/Q_H
- Refrigerators
 → Coefficient of Performance = Q_C/(Q_H Q_C)
- Entropy $\Delta S = Q/T$
- Second Law: Entropy always increases!
- Carnot Cycle: Reversible, Maximum Efficiency $e = 1 T_c/T_h$

It has been a pleasure teaching this class!