Physics 101: Lecture 19 Fluids II: Moving fluids

Review Static Fluilds

- Pressure: force from molecules "bouncing" off container $\rightarrow P=F / A$
- Gravity/weight affects pressure as you go deeper into fluid $\rightarrow P=P_{0}+\rho g d$
- Pascal's Principle
$\rightarrow \Delta \mathrm{P}_{1}=\Delta \mathrm{P}_{2}$
Today:
- Archimedes: Buoyant force is "weight" of displaced fluid

$$
\mathrm{F}_{\text {Buoyant }}=\rho_{\text {fluid }} \dot{g} \mathrm{~V}_{\text {displaced-fluid }}
$$

- Moving Fluids

Archimedes' Principle

- Buoyant Force (F_{B})
\rightarrow weight of fluid displaced
$\rightarrow \mathrm{F}_{\mathrm{B}}=\rho_{\text {fluid }} \mathrm{V}_{\text {displaced }} \mathrm{g}$
$\rightarrow \mathrm{F}_{\mathrm{g}}=\mathrm{mg}=\rho_{\text {object }} \mathrm{V}_{\text {object }} \mathrm{g}$
\rightarrow If object sinks then
" $\mathrm{V}_{\text {displaced }}=\mathrm{V}_{\text {object }}$
" $\rho_{\text {object }}>\rho_{\text {fluid }}$
\rightarrow Object floats if $\rho_{\text {object }}<\rho_{\text {fluid }}$, in which case $\mathrm{V}_{\text {displaced }}<\mathrm{V}_{\text {object }}$, and also $\mathrm{F}_{\mathrm{B}}=\mathrm{F}_{\mathrm{g}}$
» Therefore: $\rho_{\text {fluid }} g \mathrm{~V}_{\text {displ. }}=\rho_{\text {object }} g \mathrm{~V}_{\text {object }}$
» Therefore: $\mathrm{V}_{\text {displ. }} / \mathrm{V}_{\text {object }}=\rho_{\text {object }} / \rho_{\text {fluid }}$

Clicker Q

Suppose you float a large ice-cube in a glass of water, and that after you place the ice in the glass the level of the water is at the very brim. When the ice melts, the level of the water in the glass will:

1. Go up, causing the water to spill out of the glass.
2. Go down.
3. Stay the same.

Clicker Q

Which weighs more:

1. A large bathtub filled to the brim with water.
2. A large bathtub filled to the brim with water with a battle-ship floating in it.
3. They will weigh the same.

Moving fluids: Continuity of Fluid Flow

- Watch fluid moving through the narrow part of the tube $\left(\mathrm{A}_{1}\right)$
-Distance a "particle" travels $\mathrm{X}_{1}=\mathrm{v}_{1} \Delta \dagger$
-Mass of fluid in "plug"
$m_{1}=\rho V_{1}=\rho A_{1} X_{1}$ or $m_{1}=\rho A_{1} v_{1} \Delta t$
- Watch fluid moving through the wide part of tube (A_{2})

During the time it takes this quantity of fluid to move a distance $\Delta x_{1} \ldots$
-Distance a "particle" travels

$$
x_{2}=v_{2} \Delta \dagger
$$

-Mass of fluid in "plug"
$m_{2}=\rho V_{2}=\rho A_{2} X_{2}$ or $m_{2}=\rho A_{2} V_{2} \Delta t$

- "Continuity" Equation says $m_{1}=m_{2}$ fluid isn't building up or disappearing
$A_{1} v_{1}=A_{2} v_{2}$
"What goes in must come out"

...this identical quantity of fluid moves a distance Δx_{2}. The amount of fluid between points 1 and 2 remains constant.

Faucet water stream

A stream of water gets narrower as it falls from a faucet (try it \& see).
This phenomenon can be explained using the equation of continuity

The velocity increases as the water flows down and the area decreases to compensate for the increase in velocity.

Another way of putting it:

$$
\begin{aligned}
& A_{1} v_{1}=A_{2} v_{2} \\
& A_{2}=A_{1}\left(v_{1} / v_{2}\right)
\end{aligned}
$$

As the water flows down, gravity makes the velocity of the water go faster so the area of the water decreases.

Checkpoint 1a

A cylindrical blood vessel is partially blocked by the buildup of plaque. At one point, the plaque decreases the diameter of the vessel by 60%. The blood approaching the blocked portion has speed v_{0}. Just as the blood enters the blocked portion of the vessel, the blood's velocity will:
A) increase.
B) decrease.
C) remain the same.

Pressure, Flow and Work

- Continuity Equation says fluid speeds up going to smaller opening, slows down going to larger opening

$$
\begin{aligned}
& \rightarrow \mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2} \\
& \rightarrow \mathrm{v}_{2}=\mathrm{v}_{1}\left(\mathrm{~A}_{1} / \mathrm{A}_{2}\right)
\end{aligned}
$$

- Acceleration due to change in pressure. $\mathrm{P}_{1}>\mathrm{P}_{2}$

Demo \rightarrow Smaller tube has faster water and LOWER pressure

$$
\begin{aligned}
& \text { Recall: } \\
& \begin{aligned}
\text { W} & =F d \\
& =P A d \\
& =P V
\end{aligned}
\end{aligned}
$$

- Change in pressure does work!
$\rightarrow \mathrm{W}=\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \mathrm{V}$

Pressure Clicker Q

- What will happen when I "blow" air between the two pieces of paper?

$\begin{array}{ll}\text { A) Move Apart } & \text { B) Come Together }\end{array}$
C) Nothing

More demos showing regions of high velocity fluid have low pressure

- Soda cans: blow air between them
- Big metal plates: Blow lots of air between them
- Balancing objects with streams of air
\rightarrow a ping pong ball,
\rightarrow add a funnel and now balance
\rightarrow a screwdriver
\rightarrow a bigger ball.
- Blow air across one end of a "U" tube with water in it:

Checkpoint 1b

A cylindrical blood vessel is partially blocked by the buildup of plaque. At one point, the plaque decreases the diameter of the vessel by 60%. The blood approaching the blocked portion has speed v_{0}. Just as the blood enters the blocked portion of the vessel, the blood's pressure will
A) increase.
B) decrease.
C) remain the same.

Checkpoint 2

The figure below shows a simple device called a Venturi meter for measuring fluid velocity. The fluid flows from left to right through the horizontal pipe, from the section with large cross sectional area A_{1} to the section with small cross sectional area A_{2}.
Through which tube does the fluid rise the highest?
A) Tube A
B) Tube B
C) Same for both

Bernoulli's Eqs. And Work

- Consider tube where both Area \& height change and apply the Work-Kinetic Energy Theorem:

$$
\begin{aligned}
& \rightarrow W_{\text {net }}=W_{\text {fluid }}+W_{\text {gravity }}=\Delta K \\
& \left(P_{1}-P_{2}\right) V-m g\left(y_{2}-y_{1}\right)=1 / 2 m\left(v_{2}^{2}-v_{1}^{2}\right) \\
& \left(P_{1}-P_{2}\right) V-\rho V g\left(y_{2}-y_{1}\right)=1 / 2 \rho V\left(v_{2}^{2}-v_{1}^{2}\right) \\
& P_{1}+\rho g y_{1}+1 / 2 \rho v_{1}^{2}=P_{2}+\rho g y_{2}+1 / 2 \rho v_{2}^{2}
\end{aligned}
$$

(a)

Bernoullii Clicker Q

Through which hole will the water come out fastest?

Clicker Q

A large bucket full of water has two drains. One is a hole in the side of the bucket at the bottom, and the other is a pipe coming out of the bucket near the top, which bent is downward such that the bottom of this pipe even with the other hole, like in the picture below:
Though which drain is the water spraying out with the highest speed?

1. The hole
2. The pipe
3. Same

Demo: The pressure cannon

- This demo shows that atmospheric pressure is substantial and can do some damage.

Example: Lifit a House

Calculate the net lifting force on a 15 mx 15 m house when a $30 \mathrm{~m} / \mathrm{s}(67 \mathrm{mph})$ wind $\left(1.29 \mathrm{~kg} / \mathrm{m}^{3}\right)$ blows over the top. Write Bernoulli eqn just above roof and just below roof:

$$
P_{\text {below }}+\rho g y+1 / 2 \rho v_{\text {below }}{ }^{2}=P_{\text {above }}+\rho g y+1 / 2 \rho v_{\text {above }}{ }^{2}
$$

Just below roof the air has no velocity so $\mathrm{v}_{\text {below }}=0$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{P}_{\text {below }}- & \mathrm{P}_{\text {above }}=1 / 2 \rho \mathrm{v}_{\text {above }}^{2} \\
& =1 / 2(1.29)\left(30^{2}\right) \mathrm{N} / \mathrm{m}^{2} \\
& =581 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned} \\
& \mathrm{~F}=\mathrm{P} \text { A }
\end{aligned}
$$

$$
=581 \mathrm{~N} / \mathrm{m}^{2}(15 \mathrm{~m})(15 \mathrm{~m})=131,000 \mathrm{~N}
$$

$=29,450$ pounds! (note roof weighs $15,000 \mathrm{lbs})$

Example

A garden hose w/inner diameter 2 cm , carries water at $2.0 \mathrm{~m} / \mathrm{s}$. To spray your friend, you place your thumb over the nozzle giving an effective opening diameter of 0.5 cm . What is the speed of the water exiting the hose? What is the pressure difference between inside the hose and outside?

Continuity Equation

$$
\begin{aligned}
& A_{1} v_{1}=A_{2} v_{2} \\
& \mathrm{v}_{2}=\mathrm{v}_{1}\left(\mathrm{~A}_{1} / A_{2}\right) \\
& \quad=\mathrm{v}_{1}\left(\pi \mathrm{r}_{1}^{2} / \pi \mathrm{r}_{2}^{2}\right) \\
& \quad=2 \mathrm{~m} / \mathrm{s} \times 16=32 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Bernoulli Equation

$$
\begin{aligned}
& \mathrm{P}_{1}+\rho g y+1 / 2 \rho \mathrm{v}_{1}{ }^{2}=\mathrm{P}_{2}+\rho g y+1 / 2 \rho \mathrm{v}_{2}{ }^{2} \\
& \mathrm{P}_{1}-\mathrm{P}_{2}=1 / 2 \rho\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}^{2}\right)=1 / 2 \rho\left(32^{2}-2^{2}\right) \\
& \quad=1 / 2 \times\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1020 \mathrm{~m}^{2} / \mathrm{s}^{2}\right)=5.1 \times 10^{5} \mathrm{PA}
\end{aligned}
$$

Fluid Flow Summary

$$
A_{1} P_{1} \vee_{1} \longrightarrow A_{2} P_{2} v_{2} \longrightarrow
$$

- Mass flow rate: $\boldsymbol{\rho A v}$ (kg/s)
- Volume flow rate: $\mathrm{Av}\left(\mathrm{m}^{3} / \mathrm{s}\right)$
- Continuity: $\rho \mathrm{A}_{1} \mathrm{v}_{1}=\rho \mathrm{A}_{2} \mathrm{v}_{2}$
- Bernoulli: $\mathrm{P}_{1}+{ }^{1 / 2} \rho \mathrm{v}_{1}{ }^{2}+\rho \mathrm{gh}_{1}=\mathrm{P}_{2}+{ }^{1 / 2} \rho \mathrm{v}_{2}{ }^{2}+\rho \mathrm{gh}_{2}$

