True-false questions are worth 2 points each, three-choice multiple choice questions are worth 3 points each, five-choice multiple choice questions are worth 6 points each. The maximum possible score is 105. The exam period was 90 minutes; the mean score was 78.1; the median score was 81. Click here to see page1 page2 of the formula sheet that came with the exam.

Sarah goes for a walk along the x-axis. The walk takes her 400 seconds to complete. The graph shows her velocity V as a function of time.

How far did Sarah walk in 400 seconds?

(a) 0 m (b) 200 m (c) 400 m (d) 500 m (e) 800 m

(a) 0.01 m/s^{2} (b) 0.02 m/s^{2} (c) 0.05 m/s^{2}

This figure shows an airport luggage carrying train with a tractor T is pulling three luggage carts, M_{1}, M_{2} and M_{3}, with an acceleration of 1.4 m/s^{2}. The mass of the tractor T is M_{T} = 300 kg; the masses of the carts are M_{1} = 200 kg, M_{2} = 100 kg and M_{3} = 100 kg, respectively.

The net force on cart M_{3} is

(a) 140 N. (b) 280 N. (c) 560 N.

(a) 980 N. (b) 560 N. (c) 280 N. (d) 40 N. (e) 0 N

(a) 70 m (b) 135 m (c) 180 m

(a) 7 m/s (b) 14 m/s (c) 21 m/s

(a) 0.14 (b) 0.25 (c) 0.33

Two masses are suspended by a cord that passes over a pulley with negligible mass. The cord also has negligible mass. One of the masses, m_{1}, has a mass of 5.0 kg and the other mass, m_{2}, is unknown. The acceleration of m_{1} is measured to be 2.45 m/s^{2} downward.

Compare the magnitude of the tension in the string attached to m_{1} with that attached to m_{2}.

(a) |T_{1}| > |T_{2}| (b) |T_{1}| = |T_{2}| (c) |T_{1}| < |T_{2}|

(a) 12.25 N (b) 36.8 N (c) 49 N

(a) 2.0 kg. (b) 3.0 kg. (c) 4.0 kg. (d) 5.0 kg. (e) 6.0 kg.

Two masses are connected by a cord that passes over a pulley as shown in the figure. The pulley and the cord have negligible mass. Mass 2 moves on a horizontal surface without friction and mass 1 is suspended vertically. The cord has negligible mass. Mass 1 is equal to 4.0 kg and mass 2 is equal to 8.0 kg.

What is the acceleration of mass 1?

(a) 2.61 m/s^{2} (b) 3.27 m/s^{2} (c) 3.77 m/s^{2}

(a) 15.2 N (b) 21.2 N (c) 26.2 N (d) 32.7 N (e) 37.7 N

(a) smaller than T. (b) equal to T. (c) larger than T.

A ball is thrown horizontally outward from the balcony of a tall building. The ball starts 150 m above level ground. The initial speed of the ball is 35 m/s in the horizontal direction.

How much time does it take for the ball to reach the ground?

(a) 2.6 s (b) 4.3 s (c) 5.5 s

(a) D = 127 m (b) D = 194 m (c) D = 300 m (d) D = 378 m (e) D = 481 m

(a) 35 m/s (b) 50 m/s (c) 64 m/s (d) 91 m/s (e) 101 m/s

(a) the same as that for the first ball. (b) larger than that for the first ball. (c) smaller than that for the first ball.

A small ball of mass m = 0.050 kg is suspended by an ideal string of length L = 0.40 m. and set in a circular motion. The cord makes an angle of θ with respect to the vertical. The constant angular velocity of the ball is ω = 5.50 radians/sec.

What is the speed of the ball?

(a) ω L tanθ (b) ω L cosθ (c) ω L sinθ

(a) T = m g / tanθ (b) T = m g / cosθ (c) T = m g / sinθ

(a) zero. (b) equal to the force of friction. (c) greater than the force of friction.

(a) T_{1} = 45.3 N (b) T_{1} = 39.2 N (c) T_{1} = 27.4 N (d) T_{1} = 22.7 N (e) T_{1} = 18.9 N

(a) smaller than when the elevator is at rest. (b) the same as when the elevator is at rest. (c) larger than when the elevator is at rest.

(a) θ = 11.3° (b) θ = 9.5° (c) θ = 8.3° (d) θ = 7.7° (e) θ = 6.2°

(a) 61.0 km/hr. (b) 57.1 km/hr. (c) 53.3 km/hr. (d) 46.7 km/hr. (e) 45.0 km/hr.

(a) 53 sec (b) 40 sec (c) 27 sec