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Reference book: Chapter 2 in <<Medical Imaging Signals and Systems>>, 
Prince and Links, Prentice Hall, 2006. 



Signals and Systems

Reading Material:

Chapter 2 in 
Medical Imaging Signal and Systems, 2’nd Ed. 

J. L. Prince et. al, 
Prentice Hall, 2012.
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The Basic Problems in Imaging

The forward problem: Given an 
input signal and the known 
response of  a imaging system, 
what is the output is going to be? 

?

The inverse problem:

Given a output signal and 
the known system response, 
what should be the input 
signal that gave rise to the 
output data?

?
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How to Improve the Tradeoff between Spatial Resolution 
and Sensitivity?

The idea of multiplexing –

• Each detected photon no longer
corresponds to a unique emission
location in the 2-D source plane.

• Information content per detected
photon is decreased.

• No of detected photons is
increased.



• Discrete signal: Pixel and voxel representations of a continuous
signal

Introduction to Signals
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• Continuous signal:

A continuous 2-D signal



?? How do we mathematically  model/describe 
an imaging system?

?? how do we mathematically describe the 
response of an imaging system to an arbitrary 

input signal? 
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Continuous Fourier Transform
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• For any square-integrable function f(x,y), a continuous Fourier

transform is defined as

• We can also define an inverse Fourier transform as
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• Both f(x,y) and F(u,v) have infinite support.

• Both f(x,y) and F(u,v) are defined on a continuum of  values.

• f(x,y) and F(u,v) must contain the same information.



Continuous Fourier Transform
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Discrete Fourier Transform in 1-D
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Continuous Fourier Transform
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A Fourier Transform is an integral transform
that re-expresses a function in terms of different
sine waves of varying amplitudes, wavelengths,
and phases.

So what does this mean exactly?

Can be represented by:

When you let these three waves interfere with each other
you get your original wave function!

Let’s start with an example…in 1-D

Notice that it is symmetric around the
central point and that the amount of points
radiating outward correspond to the distinct
frequencies used in creating the image.

Increasing FrequencyIncreasing Frequency

Since this object can be made up of 3
fundamental frequencies an ideal Fourier
Transform would look something like this:



Fourier Transform and Spatial Frequency
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Fourier transform provides
information on the sinusoidal
composition of a signal at different
spatial frequencies.



What is Spatial Frequency?
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?? How do we mathematically  model/describe 
an imaging system?

?? how do we mathematically describe the 
response of an imaging system to an arbitrary 

input signal? 

?? What is a signal anyway, and what is an 
imaging system anyway?
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The Basic Idea for Modeling an Imaging System
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The task of analyzing the response of a given system to an arbitrary
input signal could be simplified by

• first, decomposing the input signal into the linear combination of
a series basis functions …

• then figure out the response of the system to the basis signal …

• if we consider the imaging system is a linear system,

• The overall response of the system to the input signal could be
synthesized based on the responses of the system to the basis input
signals …
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Point Impulse Signal
• A point source is mathematically represented by the delta

function or Dirac function.
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Point Impulse Signal

• A signal is periodic if
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Point Impulse Signal

• The sampling property
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Comb and Sampling Function
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• The 2-D comb function
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Comb and Sampling Function
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Comb and Sampling Function

• The sampling function is critical for the discretization of
continuous signals.

• The sampled signal function is then

fs (x, y)  f (x, y) s (x, y)
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A central question about sampling:

Will this continuous-to-discrete sampling process 
cause any loss in information?



Revisit to X-ray Planar Radiography
What are we measuring with planar X-ray radiography? 

2 % attenuation change 
detectable in film



X-ray Computed Tomography (CT)

0.2 % attenuation change detectable in 
CT Images !!



X-ray Computed Tomography (CT)

Planar X-Ray Computed Tomography

Images courtesy of  Robert McGee, Ford Motor Company

Separates Objects on Different Planes



Emission Tomography

• Drug is labeled with radioisotopes that emit
gamma rays.

• Drug localizes in patient according to metabolic
properties of that drug.

• Trace (pico-molar) quantities of drug are
sufficient.

• Radiation dose fairly small
(<1 rem).

Drug Distributes in Body



Single Photon Emission Computed Tomography 
(SPECT)

Collimator Pinhole

Coded
Aperture Compton

Collimator in front of the detector
to select gamma rays from certain
directions only …

Rotated around the object for
collecting multiple projections
…



Positron Emission Tomography

Typical Detection Process

Collection of  Line-integrals
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Line Impulse Signal (1)
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Line Impulse Signal (1)
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• It can be used to measure the spatial resolution of a given
imaging system.

• It is used to calculate the line-integral projection data for a
given 2-D object.



Line Impulse Signal (2)
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The value of the projection function p(x’)
at this point is the integral of the function
of f(x,y) along the straight line:
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The integral of the product of a line impulse function and a given 2-D
signal gives the projection data from a given view …



x ', (x, y)(x cos  ysin  x ')

Line-impulse function is the key for modeling the projection process

that underlying tomographic imaging process …
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Rect Function
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• It is normally used to pick up a particulate section of a given
function:
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Sinc Function
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• The sinc function is defined as

• The sinc function is normalized.
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Any arbitrary band-limited signal can be written as a weighted sum of
multiple sinc functions … (the Nyquist Sampling Theorem)



NPRE 435, Principles of  Imaging with Ionizing Radiation, Fall 2019 Signals and Systems

• Triangular function:
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• Normalized Gaussian function:
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Separable Signals and Periodic Signals

periods signal  theare Y and X where
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• The separable signals is a class of continuous signals that satisfy

• A signal is periodic if
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Two Dimensional Sampling
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Restoration of the Original 2-D Function 
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Given that the Nyquist sampling condition is met, the original function 
could be recovered exactly as
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General Concept of a System
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• A continuous-to-continuous system is defined as

• A system is a mapping process from an input signal to the output
signal
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Linear Systems
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A system is linear if it satisfies the superposition principle
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Linear Systems – An Example
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For example, consider an amplifier with gain A:
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Linear Systems – Why Important?

• Linear systems is mathematically more “tractable”.

• Many imaging systems used in medical and other applications can be
described as linear systems.
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Linear Systems – Why Important?
• Linear systems satisfy the Superposition Principle.
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• It would be good if we can decompose an arbitrary signal into a linear
combination of a series of basis functions – such as the -function.

• If one can derive the response of the system to this basis function,

• then the response of a system to the arbitrary input signal should
easily follow …
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Continuous Fourier Transform
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Comb and Sampling Function

• The sampling function is critical for the discretization of
continuous signals.

• The sampled signal function is then

fs (x, y)  f (x, y) s (x, y)

 f (x, y)  (x mx, y ny)
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where x and y are the sampling intervals
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Linear Systems – Why Important?
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Since we can often decompose an arbitrary input signal as a linear
combination of basis functions (delta functions, or sinusoidal
functions, or sinc functions etc.),

the response of a linear system to the given arbitrary input signal
can therefore be modeled as the linear combination of the response
of the system to each individual basis functions….
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Linear Systems – Why Important?

NPRE 435, Principles of  Imaging with Ionizing Radiation, Fall 2019 Signals and Systems
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Impulse Response Function

One of  the most common shape for impulse responses used in 
imaging application
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Impulse Response Function
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For a linear system, knowing the IRF, one could compute the output from any
arbitrary input function as
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The linearity condition is

used here

Using the sampling property of
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Impulse Response Function
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For a linear system, knowing the IRF enables one to compute the output
from any arbitrary input function.

The impulse response function is defined as
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Impulse Response Function
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For a linear system, knowing the IRF enables one to compute the output from any

arbitrary input function:

Or written explicitly as
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 dd),,y,x(h),(f)y,x(g  









Covered in 
lecture



Impulse Response Function

• For a 2-D problem, the impulse response is a 4-D function.

 ddyxhfyxg ),,,(),(),(  









• The computation can be greatly reduced with further
simplifications …
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What exactly is this function again? What does it
tell us about the system?
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Shift Invariant Systems
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Shift Invariant Systems
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Shift Invariant Systems (II)

 ),(),( yyxxfSyyxxg 

• A system is called shift-invariant if

• Shift-invariance does not require or imply linearity

• The impulse response function of a shift invariant system is

),()],([),,,( ,    yxhyxSyxh

4-D  2-D
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Shift Invariant Systems (III)

• The output of a linear and shift-invariant system is the input
convolved with the impulse response function.

• The impulse response function of a shift invariant system is
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Linear Systems – Why Important?

• Many imaging systems used in medical and other applications can be
described as linear systems.

• Ideally, we should have
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Image = Object * Impulse Response Function + Noise

Convolution process

• We are not quite there yet …
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Impulse Response Function

• The impulse response function is defined as

][ )y,x(S),,y,x(h  

• The impulse response function is sometimes referred to as the point-

spread function (PSF).
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two boxes two Gaussians

• red, blue: convolved signals

• green: convolution result

Convolution Operation in 1-D – Examples

f (x)g(x)  f ()g(x  )d



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Properties of Convolution Operation

),(),(),(),( 1221 yxhyxhyxhyxh 

• Commutativity

  ),(),(),(),(),(),(),( 2121 yxfyxhyxfyxhyxfyxhyxh 

• Distributivity
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original

Convolution Operation – Examples
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Connection of LSI Systems

 
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LSI systems may be decomposed into the combination of multiple sub-
systems. This may lead to a simplified mathematical representation of the
complete system…
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Separable Systems

)()(),( 21 yhxhyxh 

A system is called separable if

in which case, the convolution between the input and the impulse
response function is
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Separable Systems
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 ),(*)(*)(),(*),(),( 21 yxfyhxhyxfyxhyxg 

For a separable system, the 2-D convolution operation can be re-write as
two 1-D convolution operations.

An example
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Separable Systems – An Example
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An input image pass through a separable system having a impulse
response function described by a 2-D Gaussian function
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Summery of Key Concepts

• Signals can be described as multi-variate functions.

• Arbitrary signals may be represented (or approximated) by linear
combinations of some basic signal functions, such as delta signal, rect
signal etc.

• The impulse response function of a given system is the output from
an delta input signal.

• A system is linear if when the input consists of a collection of signals,
the output is a summation of the responses of the system to each
individual input signal.

• A system is shift-invariant if an arbitrary translation of the input
results in an identical translation of the output.

• A linear and shift-invariant (LSI) system may be described as a
convolution operator.
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