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Signals and Systems

Reading Material:
Chapter 2 in
Medical Imaging Signal and Systems, 2’nd Ed.
J. L. Prince et. al,
Prentice Hall, 2012.
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" A
The Basic Problems in Imaging

The forward problem: Given an

?

input signal and the known

response of a imaging system,

what is the output 1s going to be? |
Input f System § Output g

The inverse problem:

Given a output signal and

?

the known system response,

what should be the input

signal that gave rise to the
Input f System § Output g output data?
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" J
How to Improve the Tradeott between Spatial Resolution
and Sensitivity?

Coded Aperture

The idea of

* Each detected photon no longer
corresponds to a unique emission
location in the 2-D source plane.

Rﬁuluh’un-d(l-r 1] Tt

b
M o= i
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Efficienza = m{ be e b

* Information content per detected
photon is decreased.

* No of detected photons is

© Better increased.
Resolution

© High Efficiency
¥ Complicated
Reconstruction
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Introduction to Signals

* Continuous signal:

A continuous 2-D signal

f(xay)a —Ooﬁxa)/goo

* Discrete signal: Pixel and voxel representations of a continuous

signal

Pixel

A..'..,,..
A SRR T SR R A
LA L

Volume
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°? How do we mathematically model/describe

an imaging system?
?? how do we mathematically describe the

response of an imaging system to an arbitrary

input signal?
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Continuous Fourier Transform

 For any square-integrable function fx,)), a continuous Fourier

transform is defined as

F(u,v)= r’ jw F(x, )e 7@ ey
where j =-1

e We can also define an rnverse Fourier transform as

f(x,y)= J: foo F(u,v)e’ "™ dudy

* Both f(x,y) and F(u,v) have infinite support.
* Both f(x,y) and F(u,v) are defined on a continuum of values.

* f(x;y) and F(u,v) must contain the same information.

e J2mWxtvy) = cos[2m(ux + vy)] —j - sin[2n(ux + vy)]
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Continuous Fourier Transform

e Vave

T VVVV\,
\NVWW

-

www.revisemri.com
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Discrete Fourier Transform in 1-D

The discrete Fourier transform (DFT) is defined as

_J2mk

N-1
F,=> fie ¥ ,n=012,.N-1
k=0

n = 0 corresponding to the DC component (spatial frenquency 1s zero)
n=1,...,N/2-1are corresponding to the positive frenquencies 0 <u <u_

n = N/2,...,N-1are corresponding to the negative frenquencies-u_ <u <0

The inverse DFT is defined as

1 Nl _J2mk

=—>»Fe V¥ k=01,2,.N-1
fk Nn:O n

_.2mnk

i 2mnk
e N =cos

2mnk

—j + sin|




"
Continuous Fourier Transform

A Fourier Transform is an integral transform
that re-expresses a function in terms of different
sine waves of varying amplitudes, wavelengths,

and phases. Since this object can be made up of 3
fundamental frequencies an ideal Fourier
So what does this mean exactly? Transform would look something like this:

Let s start with an example...in 1-D

Increasing Frequency « » Increasing Frequenc
Yy < > y

Notice that it is symmetric around the

central point and that the amount of points
o o radiating outward correspond to the distinct

frequencies used in creating the image.

When you let these three waves interfere with each other
you get your original wave function!
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Fourter Transform and Spatial Frequency

/N
One term: / \

N

Square
wave

Fourier transform provides XA
Two terms: / \

information on the sinusoidal

composition of a signal at different

spatial frequencies.
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What 1s Spatial Frequency?

. —
0
o0 o0 . LD profile
f(x, )= Lo j_wF(u,v)e_’z”(”x”y)dudv "
e—j 27 (ux+vy) I -.._'.-..i;_,m’sf:lzot‘;:t. 7.9 72

— cos[zyz(ux + vy)] + sin[27z(ux + vy)]
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°? How do we mathematically model/describe
an imaging system?
?? how do we mathematically describe the
response of an imaging system to an arbitrary

input signal?

?? What is a signal anyway, and what 1s an

imaging system anyway?
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The Basic Idea for Modeling an Imaging System

The task of analyzing the response of a given system to an arbitrary

input signal could be simplified by

* first, decomposing the input signal into the linear combination of

a series basis functions ...
* then figure out the response of the system to the basis signal ...
* if we consider the imaging system is a linear system,

* The overall response of the system to the input signal could be
synthesized based on the responses of the system to the basis input

signals ...
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" A
Point Impulse Signal

* A point source 1s mathematically represented by the delta

function or Dirac function.

#0, x=0and y=0

. 8(x,y)
=0, otherwise N

o(x, y){

and

L oty =1 ALy
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Point Impulse Signal

s(x)=lima ¢ ™~

a—>0

o(x) = limgsinc(ax); sinc(x) =
T

-1F

N

sin(x

o —>® X
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" A
Point Impulse Signal

* The sampling property

[ rnse—y-nadsdy= f&n)

* The scaling property

1
o(ax,by) = ab) o(x,y)

#0, x=0and y=0
o(x,y)

=0, otherwise

and

fw fw S(x,y)dxdy =1



" A
Comb and Sampling Function

e The 2-D comb function

comb(x,y) = i ié(x—m,y—n)

m=—ao0 n=—00
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" A
Comb and Sampling Function

* The 2-D sampling function

é;(xayanaAy): Z Z 5(x—mAx,y—nAy)

m=—00 n=—00

where Ax and Ay are the sampling intervals

é;(x?y’Ax7Ay):

comb(x,y) = Z Zé(x m,y—n)

m=—0o0 n=

o(ax,by) = —5(x )
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Comb and Sampling Function

* The sampling function 1s critical for the discretization of

continuous signals.
* The sampled signal function is then

é:v(xayanaAy): Z Z 5(X—I71A)C,y_nAy)

M=—00 N=—00

where Ax and Ay are the sampling intervals

f.(x,»)=f(x,y) 0,(x,y)
=f(x5,p) D, D, 8(x—mAx,y—nAy)

IM=—00 =—00

mﬁm —> HMTTW.
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A central question about sampling:

Will this continuous-to-discrete sampling process
cause any loss in information?

Wﬁ-ﬁ-\ —> HMTTW.
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" JE
Revisit to X-ray Planar Radiography

What are we measuring with planar X-ray radiography?

2 % attenuation change
detectable in film

A 0 B
AX
i :]Oe_ﬂlee_ﬂzAx...e_,‘
) L) L —] e ( M+ Uy +/un)
/ 5
A[A), P:—ll’l(] J: J‘ﬂ(x)dx



X-ray Computed Tomography (CT)

1st translation

> X-ray tube
S 0.2 % attenuation change detectable in
= CT Images !
w
c
o
\ ; A+B=7
- A A+C=6 O
B+D=8 . :
9 5 C+D=7
6. 8
problem method solution

"IGURE 13-27. The mathematical problem posed by computed tomographic (CT)
‘econstruction is to calculate image data (the pixel values—A, B, C, and D) from the
rojection values (arrows). For the simple image of four pixels shown here, algebra
:an be used to solve for the pixel values. With the six equations shown, using sub-
titution of equations, the solution can be determined as illustrated. For the larger

mages of clinical CT, algebraic solutions become unfeasible, and filtered backpro-
ection methods are used.
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X-ray Computed Tomography (CT)

Planar X-Ray Computed Tomography

.

Separates Objects on Ditferent Planes

Images courtesy of Robert McGee, Ford Motor Company



" JEE
Emission Tomograph
& F grapny

Drug is labeled with radioisotopes that emit

gamma rays.

Drug localizes in patient according to metabolic

properties of that drug.

Trace (pico-molar) quantities of drug are

sufficient.

Radiation dose fairly small
(<1 rem).

Drug Distributes in Body



Single Photon Emission Computed Tomography
(SPECT)

Collimator in front of the detector

to select gamma rays from certain

directions only ...

Collimator Pinhole

Rotated around the object for

collecting multiple projections

Coded
Aperture Compton



Positron Emission Tomography

Collection of Line-integrals

R |

Typical Detection Process




" J
Line Impulse Signal (1)

0,(x,y)=0(xcos@+ ysinf—I)

>0, xcos@+ysmnf=I
where 0(x) =

0, otherwise

5€(x’ y)

€ = x cosf + ysind
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" J
Line Impulse Signal (1)

0,(x,y)=0(xcos@+ ysinf—I)

* It can be used to measure the spatial resolution of a given

imaging system.

e It is used to calculate the line-integral projection data for a

given 2-D object.
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" J
Line Impulse Signal (2)

y
Object
f(x,y)

Y 0, 4(x,y)=0(xcos P+ ysing—x")
y

x’ = X cos@+ y sing

2-D integral >

The integral of the product of a line impulse function and a given 2-D

signal gives the projection data from a given view ...

Py (x') = Lo LO f(x,y)0(xcosg+ ysing—x")dxdy
Line-impulse function is the key for modeling the projection process

that underlying tomographic imaging process ...



Rect Function

e Rect function:

rect(x)

. 1 |
rect(x, y) = 1, for |X| < 5 and |Y| < 5

0, otherwise .
-172 0 12 X

e It is normally used to pick up a particulate section of a given

function:

£ y)-rect (=2 27

Wx Wy
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Sinc Function

e 'The sinc function is defined as

sinc(x)

. sin(/zx A
sinc(x) = ),
JtX
e The sinc function is normalized. ~_ N\ N\ .

| sinc(x)dx =1

Any arbitrary band-limited signal can be written as a weighted sum of

multiple sinc functions ... (the Nyquist Sampling Theorem)
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Triangular Signals and Gaussian Signals

* Triangular function:

12y = 1= for x|<L
21 L

=0 for ‘x‘>L

e Normalized Gaussian function: e G

Gp(x) = \/70_ 2o

1 _X +y2

G2D(x9y) —

2
27TO
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Separable Signals and Periodic Signals

* 'The separable signals 1s a class of continuous signals that satisfy

.\‘:+)‘z x2
1 a 2 1 a 2 1

e 20 — 620

2o N2mo

f(x»)=fi(x)- f,(»)

* A signal is periodic 1f

Jy)=fx+X,y)=f(x,y+7Y)
where X and Y are the signal periods

{

/
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Two Dimensional Sampling

fs(xay): f(xay)'5s(xayan9Ay)

; i f(xy)-0(x-nAx,y-mAy)

n=-oom=-oo

o0

— Z Zf(nAx,mAy)-S(x-nAx,y-MA)/)

n=-oom=-oo
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" A
Restoration of the Original 2-D Function

Given that the Nyquist sampling condition is met, the original function
could be recovered exactly as

S, y)=f,(x,y)*h(x,y)

1 . x 1
= fi(x. y)*[Ax-smc( m)}{ o

-sinc(Ay)}
Y

_ i if(” Ax,mAY)-0(x—n-Ax, y—m-Ay) *{{Alx sinc( )}{ 1 ,sinC(l }

Nn=—00 M=—0u0

x—n-Ax y—m-Ay

= ——— [ (nAx,mAy) - sin¢( ) - sinc( )
n—z_oo mZOO AX' Ay sin‘c(x)
sinc(x) = sin(z) N l \ AN
JX —4~=3 - 1 0 1\/2 M
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General Concept of a System

* A continuous-to-continuous system is defined as

g(x,y)=511f(x, )]

Input f System § Output g

* A system 1s a mapping process from an input signal to the output

signal
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Linear Systems

A system 1s linear if it satisfies the superposition principle

S| fOe)= 2w £, ) | = 2w - SL )

where

f(x, y)1s the input signal,

S [] 1s an operator that represents the system,
f (x, y)1s the total input signal and

w,s are weighting factors.
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Linear Systems — An Example

For example, consider an amplifier with gain A:

A 4
r
X L p

f2_.
| S[W1f1+W2f2]:A(W1f1+W2f2)
= Aw, f,+ Aw, [, = wlS[fl]+w2S[f2]

— L =

o 1

It satisfies the Superposition Principle

- S{f(x,y)=zwi-Ji(x,y)}ZWi-S[ﬂ(x,y)]

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019 Signals and Systems



Linear Systems — Why Important?

e Linear systems is mathematically more “tractable’ .
1
f,)<S| f(x,)=D> w- fi(x,y) |= g(x,»)
i=1

* Many imaging systems used in medical and other applications can be

described as linear systems.
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" J
Linear Systems — Why Important?

e Linear systems satisfy the Superposition Principle.

g(x,) = S[f (e, 0)] =8| 2w, fil(x,p) | = ZW"' S| f:(x. )]

L =1 -

e It would be good if we can decompose an arbitrary signal into a linear

combination of a series of basis functions — such as the O-function.

* If one can derive the response of the system to this basis function,

* then the response of a system to the arbitrary input signal should

easily follow ...
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Continuous Fourier Transform

e Vave

T VVVV\,
\NVWW

<

WWW. revisel.

NPRE 435, Principles of Imaging with Ionizing Radiation, Fall 2019 Fourier Transform




Comb and Sampling Function

* The sampling function 1s critical for the discretization of

continuous signals.
* The sampled signal function is then

é:v(xayanaAy): Z Z 5(X—I’}1A)C,y_nAy)

M=—00 N=—00

where Ax and Ay are the sampling intervals

fs(xay):f(xay)' é;(xay)
= f(x%,p) D, D, 8(x—mAx,y—nAy)

IN=—00 =—00

mﬁm —> HMTWT.-
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" J
Linear Systems — Why Important?

Since we can often decompose an arbitrary input signal as a linear
combination of basis functions (delta functions, or sinusoidal

functions, or sinc functions etc.),

the response of a linear system to the given arbitrary input signal
can therefore be modeled as the linear combination of the response

of the system to each individual basis functions....
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" J
Linear Systems — Why Important?

* 'The Superposition Principle.
g(x,y) = S[f(x,»)] = S{ZW,-' Ji-(x,y)J = wa S[fi(x)]

* Given a discrete input signal

fs(-xay) = f(-x’y) S(X,y)

E E f(mAx,nAy)- 0(x — mAx,y — nAy)]

m=—00 p=—00

AxAy

* 'The response of the linear system is

g(x,y) = S[f (x,))]

=S|—

E 2 f(mAx,nAy): 6(x — mAx,y - nAy)]

m=-xn=

AxAy

E E [— f(mAx,nAy)- S[6(x — mAx,y - nAy)]]

on=
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Impulse Response Function

One of the most common shape for impulse responses used in
imaging application
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"
Impulse Response Function

For a linear system, knowing the IRE, one could compute the output from any

arbitrary mnput function as

[" [ fexps(x—ey-nidsdy = f(m)

or

" reenisce—xn-yjdxdy=f(x,y)
g(‘xﬁy) = S:f(xay)] ‘ @
=S\ [ [ rEmsc-ey-mdzdn| [ eno0=&y=njdsdy=stxy)

— Using the sampling property of

=[] slr&mote=g.y-mligdn

= [ remsloe—&y-mldn

delta function

The linearity condition is

used here
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"
Impulse Response Function

For a linear system, knowing the IRF enables one to compute the output

from any arbitrary input function.

g(x,y)=45 f (x, y)]
=5 [ [ r&mse-g.y-mzin|

= [ [ slreEmsee—é.y-mlagdn

=[] r&msloe—¢.y-magin

The impulse response function is defined as

h(x,y,Em)=So(x—&y-n)]
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"
Impulse Response Function

For a linear system, knowing the IRF enables one to compute the output from any

arbitrary input function:

g(x,y)=45 f (x, y)]
=5 [ [ r&mse-g.y-mzin|

=[ [ slremsx—¢éy-mlédn

=[] r&msloe—¢.y-magin

Or written explicitly as

g(x.y)= [ f(&nh(xy.En)dédn
4
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"
Impulse Response Function

* Tora 2-D problem, the impulse response is a 4-D function.

g )= [ fEmh(x,y.&ndédn

* The computation can be greatly rg¢duced with further

simpliﬁcations ...

What exactly is this function again? What does it

tell us about the system?
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Shift Invariant Systems

A Scintillation crystal

v/ Gamma rays

)
iy

Aerdsp Dd oL

AN
.

Photomuitipiier tubes

Scanner Final Image from Scanner

*
)| 7| #/

shift invariant shift variant
(no change) (changes with position)

object (e.g. an
organ or tumor)
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Shift Invariant Systems

Shift-Tnvariance Rule

T

Z Criginal inpuat o Churput

:

. =

" o

m =

= Linnie ‘s I'IV-/- Linrie
= =

Z R

A 3

— Crwiginal inpur, larer in fime CQutpur, later in time
T

m -

— =

£ =

= =

i Z

: A

- Lirme &% 'llv,/' time
E ¥

= b

A (5.
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Shift Invariant Systems (1)

* A system is called shift-invariant if

gx—Ax,y-Ay)=S|f(x—Ax,y-Ay)]

* Shift-invariance does not require or imply linearity
* The impulse response function of a shift invariant system 1s

h(xayaéan) :S[ag,n(xay)]:h(x_éay_n)

4-D = 2-D
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Shift Invariant Systems (11I)

* The impulse response function of a shift invariant system is

g(x,y) = IZ

-1

[ fEmh(x,y.&.mdédn

| f(Emh(x—E&,y-n)dédn

= f(x,y)*h(x,y)

* The output of a linear and shift-invariant system is the input

convolved with the impulse response function.
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Linear Systems — Why Important?

* Many imaging systems used in medical and other applications can be

described as linear systems.

* Ideally, we should have

Image = Object * Impulse Response Function + Noise

Convolution process

e We are not quite there yet ...
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Impulse Response Function

* 'The impulse response function is defined as

h(x,y,&,n)=Slo(x-&,y—n)

* 'The impulse response function is sometimes referred to as the point-

spread function (PSF).
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Convolution Operation in 1-D — Examples

F)xex) =] f(De(x - 9de

I3
,

0. 8": e red, blue: convolved signals

. green: convolution result

3 0.6}
0.4t

02+

s ala & 0 4 & s a 8 a s I‘.lll‘l..l‘lllx
-2 -1.5 -1 =0.5 0.5 1 1.8 2

-
two boxes two (Gaussians
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Properties of Convolution Operation

Fep)*h(ey)={_ [ fEmh(x—& y—n)d&dn
Commutativity

hl(xay)*hz(xay) :hz(xay)*hl(xay)

* Distributivity

[, (e, ) + By (e, )| £, ) = B (3, ) % £ (2, 1) + By (3, ) % (X, )
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Convolution Operation — Examples

0.2,
) 0.15 -
g(x,y)=f(x,y)*gauSSlan(x,y) > 0.1.
where ]
, 1
gaussian(x, y) = .
2o
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Connection of LSI Systems

-f-——b » hy > h, ——g—-»
I
L mrn, E s o] .
~— < _~

g(x, ) =h(x,p) *[h (x, p) * £ (x, )]

g(x, ) = [ (x, )+ by (x, ) |* f(x, )
=y (x, ) * [ (x, p) * £ (x, )]

= [, (e, )+ 1 (x, 0) % £ (x, )

LSI systems may be decomposed into the combination of multiple sub-
systems. This may lead to a simplified mathematical representation of the

complete system...
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Separable Systems

A system 1s called separable if

h(x,y)=h(x)h(y)

in which case, the convolution between the input and the impulse

response function is
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"
Separable Systems

For a separable system, the 2-D convolution operation can be re-write as

two 1-D convolution operations.

g(x, ») = h(x,»)* £ (x,3) = I (x)* [, () * £ (x, )]

An example

R e

aussian(x,y) =
s (x.7) 2710° 2710’ 2710°
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Separable Systems — An Example

An input image pass through a separable system having a impulse

response function described by a 2-D Gaussian function

1 Xy’ 1 B 1 b
4 — 207 _ 207 . 207
gaussian(x,y) = ~e = e e
2o \N2mo 2o
y y y

g(x,y) = f(x,y)* gaussian(x,y)
_x2+y2

1 2
Sy o——e

P o o e

(0,0) X ©o0 X\ * ©0o0o XL .
f(xy) w(x, y)
1-D convolution 1-D convolution
>
f(x,y) * hi(x) w(x,y) * hy(y)
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Summery of Key Concepts

* Signals can be described as multi-variate functions.

* Arbitrary signals may be represented (or approximated) by linear
combinations of some basic signal functions, such as delta signal, rect

signal etc.

* The impulse response function of a given system is the output from

an delta input signal.

* A system is linear if when the input consists of a collection of signals,
the output is a summation of the responses of the system to each

individual input signal.

* A system is shift-invariant if an arbitrary translation of the input

results 1n an 1dentical translation of the output.

* A linear and shift-invariant (LSI) system may be described as a

convolution operator. -
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