What is a cut-off frequency and how can it be calculated?
Which statistical tests are used to evaluate biomechanics data?
What is the purpose of IRB?
Feb 6 - Monday - Proposals due (see course website)

Feb 8 - Exam - Covers through IRB

Feb 10 - Lab 1 assignment due

HW 2 -> IRB training
Statistical analysis

(a really brief and incomplete tutorial on paired sampling tests)
Paired samples testing

• A way to compare results from the same subject that was exposed to two different testing conditions to see if there is a statistically significant difference between conditions

• Possible Methods

1) Paired t-test (if results are normally distributed)

2) Non-normal: Wilcoxon's signed ranks test OR Kstest

Kolmogorov- Smirnov
What does normal vs. non-normal data mean?

Plot histogram of values

Probability Distribution Function

Non normal

Median absolute deviation

Test for normality: kstest in Matlab

Check the data for normality!
But first some fundamental concepts…

- Hypothesis testing
 - Null hypothesis (H_0): 2 conditions are the same and any difference between conditions is due to chance. $\text{mean}(A) = \text{mean}(B)$
 - Alternate hypothesis (H_A):
 - 2 conditions are different and there is a real effect.
 - $\text{mean}(A) > \text{mean}(B) \Rightarrow 1$-tailed test
 - $\text{mean}(A) < \text{mean}(B) \Rightarrow 1$-tailed test
 - $\text{mean}(A) = \text{mean}(B) \Rightarrow 2$-tailed test
P-value

- If \(H_0 \) were true, what is the probability of observing a test statistic at least as extreme as the one we observed?

\[p\text{-value} \Rightarrow \begin{aligned} &\text{stronger evidence against } H_0 \\ &\text{or} \\ &\text{strong evidence towards accepting } H_a \ (\text{differences exist}) \\ \end{aligned} \]

Small p-values ⇒ good! How small is small enough?
Significance level (α)

- Cut-off point below which we agree that an effect is “statistically significant”.

\[
\text{If } p \leq \alpha \implies \text{reject } H_0, \text{ accept } H_A \text{ that there are differences}
\]

Typically, \(\alpha \approx 0.05 \) or 0.01

\[\uparrow\]

5% chance of rejecting \(H_0 \)
Type I and Type II errors

Type I error: Probability of rejecting H_o given H_o is true = α

Type II error: Probability of accepting H_o given H_A is true = β

<table>
<thead>
<tr>
<th>True state</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_o</td>
</tr>
<tr>
<td>Accept H_o</td>
</tr>
<tr>
<td>Reject H_o</td>
</tr>
</tbody>
</table>

Type I: testing on different days, times, unknown bias in data

Type 2: noise in data, low statistical power
Statistical Power

"power analysis"

Power = 1 - \(\beta \)

\(\beta \): probability of accepting \(H_0 \) given \(H_A \) is true

Should \(\beta \) be \(\uparrow \) or \(\downarrow \)?
Test statistic

- The numerical value that is calculated after performing a specific statistical method (test) that is used to assess the hypotheses.

Examples:

- Student’s t-test (t or T)
- Unpaired and paired versions
- F-test (F)
- used for ANOVA (ANalysis Of VAriance) when comparing 2 or more groups
- Non-parametric tests (eg. W)

Non-parametric data can either be variables that are non-normally distributed, or the data are organized by ranking observations.
Paired t-test

- Null hypothesis (H_0): mean difference between paired observations is zero.
 - mathematically equivalent to: means of the groups are equal

- Test statistic:

\[t = \frac{\overline{X}_D}{S_D} \sqrt{N} \]

\[t = \frac{\text{Mean differences}}{\text{SE of differences}} \]

SE = standard error = \(\frac{\text{standard deviation}}{\sqrt{\text{number of subjects}}} \)

- Where the differences between all pairs must be calculated. The average ($\overline{X}_{D, \text{bar}}$) and standard deviation (s_D) of those differences are used in the equation.

\[N = \text{number of samples (number of subjects)} \]
Paired t-test

- Excel built-in function for paired t-tests.

- TTEST(array1, array2, tails, type) function, where array1 is the first column of data, array2 is the second column of data, tails is normally set to 2, and type is set to 1 for a paired t-test. The result of this function is the P-value of the paired t-test.

- See the following webpage for added explanation

Wilcoxon's signed-ranks test

- Non-parametric equivalent to paired t-test
- Null hypothesis (H_0): median difference between paired observations is zero.
 - median of a finite list of numbers is the middle value after arranging all the observations from lowest to highest value
- See the following webpage for added explanation
Traditional COP measures (mm) of Standard Deviation for AP and ML directions for Case and Control conditions

<table>
<thead>
<tr>
<th>subject</th>
<th>SD_AP_Case</th>
<th>SD_AP_Ctrl</th>
<th>SD_ML_Case</th>
<th>SD_ML_Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.29</td>
<td>4.64</td>
<td>1.77</td>
<td>3.29</td>
</tr>
<tr>
<td>2</td>
<td>3.45</td>
<td>3.81</td>
<td>1.00</td>
<td>4.17</td>
</tr>
<tr>
<td>3</td>
<td>6.26</td>
<td>5.39</td>
<td>1.66</td>
<td>3.56</td>
</tr>
<tr>
<td>4</td>
<td>3.21</td>
<td>2.86</td>
<td>0.72</td>
<td>1.98</td>
</tr>
<tr>
<td>5</td>
<td>2.95</td>
<td>3.26</td>
<td>1.64</td>
<td>5.61</td>
</tr>
<tr>
<td>6</td>
<td>5.59</td>
<td>5.84</td>
<td>1.20</td>
<td>3.05</td>
</tr>
<tr>
<td>7</td>
<td>3.91</td>
<td>4.33</td>
<td>1.90</td>
<td>5.41</td>
</tr>
<tr>
<td>8</td>
<td>3.24</td>
<td>3.56</td>
<td>1.02</td>
<td>4.20</td>
</tr>
<tr>
<td>9</td>
<td>6.52</td>
<td>6.86</td>
<td>1.03</td>
<td>6.88</td>
</tr>
<tr>
<td>10</td>
<td>5.83</td>
<td>4.38</td>
<td>1.34</td>
<td>3.43</td>
</tr>
<tr>
<td>Ave</td>
<td>4.43</td>
<td>4.49</td>
<td>1.33</td>
<td>4.16</td>
</tr>
<tr>
<td>SD</td>
<td>1.44</td>
<td>1.24</td>
<td>0.40</td>
<td>1.44</td>
</tr>
</tbody>
</table>

Perform paired testing to see if SD_AP and SD_ML are significantly different due to Case or Control

Plug numbers into own Excel program using TTEST(array1, array2, tails, type) function

Or use for example: http://www.fon.hum.uva.nl/Service/Statistics/Student_t_Test.html
Writing up the results

- Report the p-value for each COP parameter that you are testing
 - Creating a table with the mean, SD, and p values is often a good starting point.
 - Here is one example of how to write up the results.

 The average (and standard deviation) AP velocity for the case and control conditions were 1.5 (0.1) m/s and 2.8 (0.2) m/s, respectively. Using a paired t-test, this result suggests that the case condition significantly reduced AP velocity compared to the control condition ($p = 0.003$).
Human Subject Testing Considerations

- Protection of Human Subjects
- Ethics
 - The Belmont Report
 - Declaration of Helsinki
 - The Nuremberg Code
 - Recent cases
- Institutional Review Board (IRB)
- Informed Consent
- When is IRB approval necessary?

http://irb.illinois.edu/
- Animal testing considerations

- Animal Welfare Act
- Public Health Service Policy on the Humane Care and Use of Animals
- Institutional Animal Care and Use Committee (IACUC)

http://iacuc.research.illinois.edu/

- Does a non-livethe “model” exist?
- Vertebrates vs Invertebrates?

↑

cute + fuzzy factor
Three basic principles: respect for persons, beneficence, and justice. (Belmont Report)

Respect for Persons:
- Individuals are autonomous agents
 - Informed consent, privacy, confidentiality
- Those w/o autonomy should be protected

Beneficence
- Do not harm
- Maximize benefits + minimize harm

Justice
- Fair distribution of research burdens + benefits
 (why test only males, Hispanics, etc)
Milgram experiment

- 1961 Yale Psychologist
- in response to the Nuremberg Trials
- "Obedience to Authority Study"
Tuskegee syphilis experiment

- Conducted between 1932 and 1972
- 600 African-American sharecroppers
 - (400 with disease, 200 controls)
- Natural progression of untreated syphilis
- Tuskegee Institute, U.S. Public Health Service
Stanford prison experiment

- 1971

24 male students; randomly assigned roles of prisoners and guards

- Mock prison situated in the basement of the Stanford psychology building

- http://www.prisonexp.org/

- US Office of Naval Research
The Immortal Life of Henrietta Lacks

- Henrietta Lacks poor black tobacco farmer
- 1951
- HeLa cell line—taken without her knowledge
- Vital for developing the polio vaccine, cloning, gene mapping, in vitro fertilization, and more..

Friday

- Kinematics
- Gait cycle
- Determinants of gait