April 17, 2017
Lecture 24
Tissue biomechanics: tendons/ligaments

BIOE/ME 481: Whole body musculoskeletal biomechanics
Tendon models in locomotion

- Decline in energy \rightarrow stored as elastic energy
- Reduces peak power input \rightarrow shock absorber

4 zones at interface with bone ("enthesis")
As force is developed and the tendon stretches the muscle fibre can change its angle of pennation.
Hysteresis

- Below failure region
- Does not follow same curve during loading & unloading
- Area inside = amount energy lost (W_d)
- due to internal friction
Stress relaxation

- Constant displacement
- Force decreases over time
- Strain rate sensitive
- Higher rate: larger peak force & greater relaxation
Creep

- Constant load
- Length of tissue increases over time

Input

Output

\[F \]

\[t_o \] \[t \]

\[\text{displ} \]

\[t_o \] \[t \]
Strain rate sensitivity

- Damage affected by rate & load magnitude
 - Slow: bone avulsion
 - Fast: ligament tearing
Basic definitions

(Linear) Spring:

depends on deformation x_s

$F_s = k \times x_s$, where $k =$ spring stiffness

(note, x_s is the total displacement, $\Delta x = x_s - 0$)

(Linear) Dashpot:

depends on velocity x_d

$F_d = b \times x_d$, where $b =$ damping coefficient
Maxwell Model

Spring in series with dashpot

\[b \quad k \quad F \]
Kelvin-Voigt Model

Spring in parallel with dashpot

\[F \]

\[k \]

\[b \]
Standard linear solid (SLS) model
Excised tissues

- Functional units
 - Tendon: muscle – tendon – bone
 - Ligament: bone-ligament – bone
 - Cartilage – cartilage - bone

BMEN 90022 - Comp Biomech - Tendon, Ligament, & Cartilage
Ligaments connect bone to bone with a transition zone.

Ligament function

- Joint stabilizer
 - Ligament – defines boundary of normal motion
 - Muscles – drive the path
- Ligament = joystick case, muscle = hand
Ligament imaging

[Images of ligament imaging on MRI and histology]

zencaroline.blogspot.com

http://silver.neep.wisc.edu/~lakes/links601lig.html
Ligament fiber orientation

- Ligaments connect bone to bone with a transition zone
- Fibers can be parallel, oblique or spirally oriented

- Largest and strongest?
 - Iliofemoral ligament

http://academic.uofs.edu/faculty/kosmahle1/courses/pt245/fibers.htm
Ligament testing

- Apparatus for manipulation knee joint
- Load cell
- Motion capture system
Ligament properties

- Depends on the ligament
- Iliofemoral Tensile strength = 3.5kN

Failure strains of ligaments can be close to 60% (recall tendon was 4-10%)

Achilles E: 0.67-1.07 GPa
Knee ligament E: 0.13-0.18 GPa
The shape of this curve will be different depending on the tissue.
Stress-strain curve
Mechanical tests

- Toe region
- Exponential relationship
- Most physiological range in which tissues function
Mechanical tests

- Linear region
 - Collagen alone: strain 2-5 %
 - Whole ligaments/tendons: 20-40%
 - Due to organization of fiber bundles
 - Functional E is measured here
+ Mechanical tests

- Non-linear \rightarrow failure
 - Reserve strength of tissue
 - Max elongation ~ 10-15%
 - Area where fibers start to rupture until complete failure
Anterior cruciate ligament (ACL)

- ACL:
 - Primary role:
 - anterior tibial displacement restraint
 - 85% of forward resisting force
 - Secondary role:
 - Interior tibial rotation restraint
 - No restraint to posterior tibial displacement
- ACL injury (tear or rupture):
 - tibia driven forward
- Clinical test:
 - anterior drawer test
Preconditioning specimens

- Stress strain curve can change over time under the same loading conditions. Why?
- **Hysteresis**
- **Internal structural changes** that occur until equilibrium point is reached
- Specimens preconditioned for 10 cycles (min) prior to testing