What is the Huxley crossbridge model and the Hill model of muscle?
Which parameters do they describe?

Lab due Friday
Extra credit coming
Office hours (Friday @ 11, after
Spring Break: Tues @ 12:30
Presentations start
April 12 ~ 1 month
A single motor unit has one axon that innervates multiple muscle fibers (10-600 fibers depending on which muscle)

twitch = basic motor unit firing
Show muscle twitch and tetanus papers

Physiological model of crossbridge cycle between myofilaments (actin & myosin)

Where does Calcium (Ca^{2+}) come from?

crossbridge video
A. F. Huxley’s 1957 Crossbridge Model for isotonic shortening

See McMahon Chap 4 reading

Muscle race for funding...

Hugh Huxley → 1953 (MIT)

1. Let’s think mechanically
 - As the actin-f myosin connects
 - Force generated at the cross-bridge site
The way to generate force at the cross-bridge is if the spring is already extended when the cross-bridge attaches.
Huxley model

1. Crossbridge attachment distributions
 Rate based on:
 \(n(x) = \text{probability that crossbridge at } x \text{ is attached} \)
 \((0 - 1) \)
 \(f(x) = \text{rate constant for attachment} \)
 \(g(x) = \text{rate constant for detachment} \)

\[
\frac{dn(x)}{dt} = \left[1 - n(x) \right] f(x) - n(x) g(x)
\]
Huxley’s crossbridge model

- Final expressions for crossbridge attachment distributions in each region:

\[n < 0: \quad n = \frac{f_i}{f_i + g_i} \left[1 - e^{-\phi/V} \right] e^{2g_i x/sV} \],

\[0 \leq x \leq h: \quad n = \frac{f_i}{f_i + g_i} \left[1 - e^{\left(\frac{x}{h}\right)\phi/V} \right] \],

\[x > h: \quad n = 0. \]

\[\phi = (f_i + g_i)^* \left(\frac{h}{s} \right), \quad \phi \text{ is just a convenient constant} \]
\[s = \text{length of one sarcomere} \]
\[V = \text{normalized rate of shortening in half-sarcomere lengths per second (i.e., normalized shortening velocity)}. \]
If we plot \(n \) vs. \(x/h \) for different \(V \), we can gain insight into the distribution of crossbridges, displacement, and shortening velocity.

Huxley’s crossbridge model

(2) Relationship between distribution of attached crossbridges, displacement, and shortening velocity

- Result: plots of \(n \) vs. \(x/h \) based on \(V \).
Exam