Term Design Project – Details

Project Description:
Form teams* of 3 to 4 students and design a new mechanical or electro-mechanical product. The product should have moving parts. Your product will have several moving parts (i.e. a mechanism). The product should be your own design and should have something new or different about it; innovation will be a portion of the grade. Your product does not have to define a new problem; it may provide a novel and/or economic solution to an existing problem, for example: an electromechanical toothbrush designed for use by the disabled or motion-impaired, a garden hose attachment that automatically washes your car while you sleep, a shoe cleaning attachment for a vacuum cleaner, shoes that transform into a skateboard...

Project Deliverables:
You will be graded on the following key deliverables:

1. Product Description
2. Concept Sketches – initial and finalized
3. Concept Selection Process (Pugh Matrix)
4. Product Design Specification (PDS)
5. CAD Models – Part and Assembly Models
6. Assembly Drawing with Cross-Sections
7. Exploded Assembly Drawing with Bill of Material (BOM)
8. Detailed Engineering Drawings fully dimensioned with tolerances
9. Tolerance Analysis
10. Materials and Manufacturability

Forms of Submission:

<table>
<thead>
<tr>
<th>1. Preliminary Presentation</th>
<th>~5% of final grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Relatively informal meeting with TA and grader on a computer in the 1009 MEL EWS lab to demonstrate that your group is on track.</td>
<td></td>
</tr>
<tr>
<td>• There is no formal grading rubric for the preliminary presentation. Your group should demonstrate to the TA and grader that you have made sufficient progress and have a clear plan for completing the remainder of the project.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Design Presentation</th>
<th>~10% of final grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A ten minute presentation to your lab section colleagues, instructor, TA and Grader in your lab sections during the last full week of semester.</td>
<td></td>
</tr>
<tr>
<td>• You will present using Creo, NOT Powerpoint, connected to a large screen projector in a presentation/conference room. See the class website for the room schedule.</td>
<td></td>
</tr>
<tr>
<td>• Please bring all Creo files (part, assembly, and drawing) on a flash drive (reliable internet connection not available) or your own laptop provided your laptop has a VGA output.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Final Written Report</th>
<th>~20% of final grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Printed, hardcopy report containing each of the deliverables listed above</td>
<td></td>
</tr>
<tr>
<td>• Due by 5pm Friday of ‘last week of class’ to Team’s grading TA</td>
<td></td>
</tr>
</tbody>
</table>
Project Deliverables in More Detail:

1. **Product Description**
 Presentation: One member of the team should briefly describe your product while another operates the computer with the Creo assembly model on the screen zooming in and rotating as needed. Also explode assembly model and include a brief animation to help clarify how it works. Be sure to mention important aspects of functionality and novelty.
 Report: This section should include about one-half to one page of narrative describing your product. Be sure to mention important aspects of functionality and novelty, and perhaps answer some of the questions: Why should I buy it? What is better about this product than other similar products in the marketplace? This section may refer to the other deliverables (images, drawings, and tables) as needed.

2. **Concept Sketches – Initial and Finalized**
 Presentation: Not required
 Report: The sketches should be any initial product ideas plus finalized concept sketches that you used for the Pugh’s concept selection matrix. Include a brief narrative explaining and reviewing these ideas along with an overview of how you navigated the ideation process.

3. **Concept Selection Process (Pugh Matrix)**
 Presentation: Not required
 Report: Include the Pugh Matrix you submitted during labs along with your brief narrative explaining the concept you chose and your justification for choosing it. Feel free to revise and update the original to better reflect your findings during the detail design phase.

4. **Product Design Specification (PDS)**
 Presentation: Not required
 Report: Include your PDS as submitted during labs but updated as necessary to reflect the evolution of the product during the detail design phase.

5. **CAD Models – Part and Assembly Models**
 Presentation: Present your assembly model while you describe your product.
 Report: A clean, colored assembly model can provide incredible benefit to both the engineering and marketing teams. The coloring scheme helps engineers distinguish between parts and does not need to be a photo-realistic rendering. Include both exploded and unexploded views (you do not need to include individual part model screenshots). You will be graded for your use of color and thoughtful selection of views. You will not submit any computer files or digital content with the final report. The final report is entirely a paper document.
6. Assembly Drawing with Cross-Sections
Presentation: Present your assembly drawing in Creo (not a pdf) with cross-sections through the assembly's main components and any motion axes.

Report: Your assembly drawing should include the three main orthographic views and cross-sections through the assembly's main axes and any motion axes. The three main orthographic views should all appear on the first sheet with cutting planes identifying the various section views, and the section views populating additional sheets. Section views should be scaled as large as possible so that it is easy to see how parts mate together (i.e. fill each page with each section).

All assembly drawings should be printed in black and white (not color). Hidden lines are optional and generally not shown in assembly drawings.

7. Exploded Assembly Drawing with Bill of Material (BOM)
Presentation: Present your exploded assembly drawing with BOM in Creo (not a pdf). It should fill the page and include balloons with parts separated out cleanly and clearly.

Report: Include a printed black and white exploded assembly drawing with bill of material and balloons to identify parts on the drawing. Your bill of material, exploded view, and balloons should appear on the same drawing sheet.

8. Detailed Engineering Drawings
Presentation: Present one detailed engineering drawing fully dimensioned and appropriately tolerated.

Report: A detailed engineering drawing should be completed for each manufactured part. Drawings are not required (and should NOT be included) for off-the-shelf parts. However, catalog and part number information should be included in the manufacturing BOM in section 10.

Your drawings will be graded based on the following criteria:

- Hidden lines shown in all views EXCEPT 3D isometric view
- Center lines on all circular features on all views
- Proper views included for all parts
 - Orthographic views for all parts
 - Cross-sections and detail views as necessary
- Specific tolerances included where necessary
 - ISO limits and fits included at motion connections
 - Tolerance scheme and units match title block information
- Overall clarity, scaling, and layout
- Text positioned outside views, no overlapping text, no lowercase text, etc.
- Arrowheads flipped correctly and cleanly, no overlapping arrowheads
- Proper dimensioning of features
 - No dimensioning to hidden lines
- No zero-dimensions
- All features are fully dimensioned; features are not over-dimensioned
- Proper use of the title block

You must complete the models of all of your parts for the design presentation. However, you are only required to present one complete, fully-dimensional drawing. In other words, you do not have to have all of your drawings completed for the presentation.

A detailed drawing of each manufactured part must be printed in black and white and included in the final written report.

9. Tolerance Analysis

Presentation: Not Required

Report: Demonstrate that you have selected appropriate tolerances, including ISO limits and fits, for one cross-section in your design that has a moving component. This should be a linear or rotary bearing arrangement. You should cover both:

- Radial or Diametral Clearance and Allowance, and
- Axial Clearance and Allowance

Please include in your report an image of the dimensioned drawing view or cross-section with the relevant parts labeled (i.e. "hole" and "shaft"). Please refer to the Drawing Tips document from Lab 8 for instructions on how to create an ISO dimension in Creo.

For Radial or Diametral Clearance and Allowance:
Identify the type of ISO fit that you propose (e.g. close running fit), the nominal and bilateral tolerances of the mating parts, and compute the worst case clearance and allowance.

For Axial Clearance and Allowance:
Identify the parts that make up the “hole” and the parts that make up the “shaft,” then compute worst case clearance and allowance, and comment on your choice of fit.

10. Materials, Manufacturability & Cost Analysis

Complete a manufacturing Bill of Materials (BOM) in Excel, using the "Manufacturing_BOM_Template.xls" as a template. Include a method of manufacture and cost estimate for all parts. For manufactured parts, use aPriori to develop material, manufacturing, and tooling cost estimates. For off-the-shelf parts, include a part number, catalog name, and the price of the part as listed in the catalog. A short list of suppliers can be found below. You are by no means limited to this list.

Additionally, discuss in narrative form how you have considered materials, manufacturing methods, cost and selling price as an integral part of your design. What is the total investment in tooling required? Is the target retail/selling price realistic? Will the product be successful? What is the risk? (Low, medium, or high?)

Presentation: Present at least a preliminary version of your manufacturing BOM in Excel. Materials and manufacturing processes should be chosen based on a part’s design and function. A
part's design should also reflect and accommodate its material and manufacturing process. A good presentation might include one or two specific examples of this Report: Complete the manufacturing Bill of Materials (BOM) in Excel and include the narrative above.