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II Project name 
Implement one of the following deep reinforcement learning papers for Atari Games in 
PyTorch: (B) “Deep exploration via bootstrapped DQN”, NIPS, 2016 by Osband et al. 
 
III Paper summary 
The original paper presents a novel approach, bootstrapped DQN, to improve classical reinforcement 
learning (RL) strategies in a computationally and statistically efficient manner. Unlike common 
dithering strategies (e.g., ε-greedy exploration), the proposed algorithm encourages temporally-
extended (or deep) exploration by creating a new architecture that supports choosing actions from 
randomized Q-functions that are trained on bootstrapped data. 

Bootstrapped DQN modifies DQN to approximate a distribution over Q-values via bootstrapping. The 
network consists of a shared architecture with K independent bootstrapped heads. Each head is trained 
on its own subset of data representing a different Q-function. The shared network learns a joint feature 
representation across all the data. Experience for training is stored in a replay buffer containing flags 
identifying which heads are trained on which data. A core idea of the bootstrapped DQN is the 
bootstrap mask. Each individual experience is given a randomly sampled mask. In the process of 
training the network on a mini-batch sampled from the replay buffer, the mask decides whether or not 
a specific Q-value function is to be trained upon that experience. 

The authors evaluates the proposed algorithm across 49 Atari games on the Arcade Learning 
Environment (ALE). Observing from the overall performance of the algorithm, Bootstrapped DQN 
improves upon the final score across most games. More significantly, bootstrapped DQN outperforms 
DQN in terms of the cumulative rewards through learning. In addition, the algorithm is able to learn 
much faster than DQN. Given the network architecture, it is also demonstrated in this work that 
bootstrapped DQN is not only computationally tractable but naturally scalable to massive parallel 
systems as well. 
 
IV Implementation 
1. Dataset 
For our project, we use the Atari game dataset implemented by OpenAI Gym. Gym is a collection of 
environments/problems designed for testing and developing reinforcement learning algorithms—it 
saves the user from having to create complicated environments. Gym is written in Python, and there 
are multiple environments such as robot simulations or Atari games. The games we selected to test the 
models are Pong and Breakout, PongDeterministic-v4 and BreakoutDeterministic-v4, to be precise. 
The observation at each step/frame is an RGB image of the screen during the gameplay, which is an 
array of shape (210, 160, 3). For Pong, the action space is {0, 2, 5} which correspond to no-op, up, 
and down, respectively. The agent plays against the computer and whoever reaches 21 points wins the 
game. For Breakout, the action space is {0, 1, 2, 3} which correspond to no-op, fire, left, and right, 
respectively. The agent tries to use the ball to hit and destroy layers of bricks and to achieve higher 



scores. For training purpose, we only uses {0, 2, 3} following the start of a game and uses the loss of 
the first life as the end of the game. Sample screenshots of both games are shown in Figure 1. 
 

                                                            
Figure 1: Screenshots of Pong and Breakout 

 
The reference for the introduction and documentation of gym can be found in [3,4] 
 
2. Model architectures 
We followed the DQN algorithm described in [2] and bootstrapped algorithm described in [1]. The 
development of our code for DQN and bootstrapped DQN are based on a basic implementation of the 
vanilla DQN [5] which was not working initially. Some modifications are made to be able to train the 
basic DQN agent successfully on the game Pong. After that, we implemented the bootstrapped DQN 
architecture. 
 
The input is 4x84x84 tensor with a rescaled, grayscale version of the last four observations. The 
convolutional network adopted in this project is described as follow. The first convolutional layer has 
32 filters of size 8 with a stride of 4, followed by a rectifier nonlinearity. The second convolutional 
layer has 64 filters of size 4 with a stride of 2, followed by a rectifier nonlinearity. The third 
convolutional layer has 64 filters of size 3, followed by a rectifier nonlinearity. The fourth 
convolutional layer has 512 filters of size 7 with a stride of 4, followed by a rectifier nonlinearity. The 
output layer is a convolutional layer of size equal to the number of valid actions. In the bootstrapped 
DQN implementation, we define k separate models of the same network structure as the bootstrapped 
heads. Due to time constraints, parallelism of the shared network architecture is not implemented and 
explored in this work. As described in the original paper, we use an independent Bernoulli mask with 
parameter p=0.5 for each head in each episode. The bootstrapped mask mt decides, for each value 
function of each head Qk, whether or not it should train upon the experience generated at step t. 
 
3. Hyperparameters  
The hyperparameters adopted to train the models are summarized as follow: 

● Optimizer: RMSProp, lr=0.0025, alpha=0.95, eps=1e-02 
● Batch size: 64 for Pong and 32 for Breakout 
● Discount factor: 0.99 
● Target network update step: 1,000 
● Memory buffer size: 100,000 
● Number of bootstrapped heads: 2, 5, 10 
● Bootstrapped DQN mask: Bernoulli with p=0.5 
● ε-greedy policy for DQN: ε decays linearly from 1.0 to 0.1 over first 1,000,000 steps 



● reward clipping: positive rewards clipped to 1, negative rewards to -1, zero unchanged 
 
4. Computational hours 
In total, we have used approximately 600 Blue Waters GPU hours, 50 personal computer GPU hours, 
and 100 Bridges GPU hours. 
 
V Results and discussion 
 
1. Pong 
Basic DQN with ε-greedy and Bootstrapped DQN with k heads (k=2, 5, 10) are trained on the game 
Pong. Average scores and Q-values during training are shown in Figure 2. Scores of Bootstrapped 
DQN are evaluated using the ensemble policy (discussed later). We observe that, with 5 and 10 heads, 
the Bootstrapped DQN is able to achieve human performance faster than the DQN. Taking 14.6 being 
the human-level score as suggested in Table 1 in the paper, Bootstrapped DQN reaches this scores at 
~70000 steps of training while DQN achieves this at ~90000 steps. This yields that the Bootstrapped 
DQN reaches human performance faster than the DQN for Pong with a factor of 1.28 which is similar 
to what is shown in Figure 7 of the paper. On the other hand, Bootstrapped DQN with k=2 performs 
equally to the DQN in terms of the score although it reaches better Q-value. In Appendix C.1 of the 
paper, it is discussed that the Bootstrapped DQN can implement deep exploration even with a small 
number of heads. However, the results are more stable and robust for larger k. This might explain that 
why the results we obtained for k=2 does not show any improvement against basic DQN. With 
regards to the fact that the Bootstrapped DQN shows similar performance for k=5 and k=10, we think 
that the need for efficient and deep exploration is not urgent in the case of Pong. Therefore, increasing 
the number of heads does not help the agent reach higher scores faster. 
 

 
Figure 2: Average Pong scores and Q-values during training for DQN and Bootstrapped DQN with 

different number of heads 
 
As suggested in the paper, while evaluating the Bootstrapped DQN, we use an ensemble policy to 
determine the action at each step. To wit, the action with the most votes across all heads is chosen at a 
given state. Figures 3 and 4 show the final scores from different heads as well as the ensembled one at 
training frame ~100000. We observe behaviors similar to what the paper claimed. The ensemble 
policy often outperforms other individual policies. At less important steps, diverse decisions are made 
by different heads while at critical steps most heads tend to agree on the same crucial action. We also 
observe that, at the early stage of training, the ensemble policy usually makes worse decisions than 
some individual heads since most heads are not trained well at that point. As the training progresses, 
the performance of the ensemble policy becomes increasingly better than individual ones. 



 

 
Figure 3: Final scores of Pong for different heads 

 

 
Figure 4: Final score of Pong for the ensemble policy 

 
2. Breakout 
We have extended the same DQN and Bootstrapped DQN methods used in Pong to the training of 
another Atari game, Breakout. Due to limited walltime (48 hours) available on Blue Waters and 
varied computational costs for each model, different training schemes ended up with various progress 
when the walltime was reached.  Compared to results in the paper, our models seemed to only start 
the initial exploration within our limited training time before the replay buffer was released from 
memory especially for Bootstrapped DQN models with multiple heads. We observe that Breakout 
took much more frames to complete each episode as the game progresses further, which limited the 
exploration for the state space corresponding to mid/late games. As a result, our models were mainly 
trained on the onset stage of Breakout. We observe that the agent failed to react at a certain point once 
it passes through the early stage of the game, indicating the exploration chain has not been trained to 
that depth.  
 
In Figure 5, average Breakout scores and Q-values are compared for DQN and Bootstrapped DQN 
models as the training proceeds. Here, we are using clipped accumulated rewards as evaluation scores 
instead of real game scores to be consistent with reward clipping in the training process. For 
bootstrapped DQN models, we have divided their number of frames by the number of heads used in 



each model so that this reflects the assumed parallel computational hours comparable to single head 
DQN models. In terms of the model evaluation, the vanilla DQN achieved the highest score among all 
models mostly because it was trained with more episodes/frames, allowing for longer and deeper 
exploration. For the Bootstrapped DQN with 5 and 10 heads, their performances were similar to the 
early stage of vanilla DQN. Unexpectedly, Bootstrapped DQN with 2 heads and DQN with ε-greedy 
achieved much lower scores. We believe the failure of Bootstrapped DQN with 2 heads resulted from 
its lack of effective ensemble policy during evaluation, even though the initial exploration was 
successful suggested by its high action value/Q-value. In contrast, DQN with ε-greedy failed even at 
the initial exploration stage because the random actions hugely prevent the game from progressing 
further. In summary, Bootstrapped DQN models all started to train the early stage of the Breakout 
shown by their Q-values, buts its advantages over DQN were not apparently shown due to the lack of 
training time.  
 

 
Figure 5: Average Breakout scores and Q-values during training for vanilla DQN, DQN with ε-greedy 

(DQN_eg) and Bootstrapped DQN with different number of heads 
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