
STAT534 Final Report

Show and Tell: A Neural Image Caption Generator
Zhejian Peng1, Yutong Dai2, Qi Tang1, Xiang Cui2, Shuhui Guo2

Abstract
This is a project report for reproducing and improving the methods proposed in the paper Show and Tell: A
Neural Image Caption Generator.

Keywords
Convolutional Neural Network, Recurrent Neural Network

1Department of Industrial Engineering, University of Illinois at Urbana Champaign, Champaign, IL
2Department of Statistics, University of Illinois at Urbana Champaign, Champaign, IL

Contents

1 Introduction 1

2 Model architectures 1

3 Training Methods 1

4 Experimental Results 2

5 Discussion 3

1. Introduction
In the area of artificial intelligence, automatically describ-
ing the content on an image using properly formed English
sentences is a challenging task. Leveraging the advances in
recognition of objects allows us to drive natural language gen-
eration systems, but the current approaches have limited abil-
ity in their expressivity. Most closely, neural networks are
used to co-embed images and sentences together, but they
didn’t attempt to generate novel descriptions. For this pa-
per, the authors combined deep convolutional nets for image
classification with recurrent networks for sequence modeling
to create a single end-to-end network that generates descrip-
tions of images. They take the image I as input and produced
a target sequence of words S = {S1,S2, . . .} by directly max-
imizing the likelihood p(S|I). They used a deep convolution
neural network as an encoder function to produce a rich repre-
sentation of the input image by embedding it to a fixed-length
vector. This embedding vector will be used as the initial hid-
den state of a decoder recurrent network that will be used to
generated the target sentence. They present an end-to-end
system for this sentence caption generation problem. Their
neural network is trainable using stochastic gradient descent
and also combines the current state-of-art sub-networks for
image and language models. These sub-models could be pre-
trained on larger datasets and take advantage of additional
data. Finally, through experiment results, they show their
method could perform significantly better compared with the
current state-of-art approaches.

2. Model architectures
The goal is to directly maximize the probability of the correct
description given the image by:

θ ∗ = arg max
θ ∑

(Ii,Si)∈D

logp(Si|Ii,θ) (1)

where (Ii,Si) is image-caption pair, D is training dataset and
θ is the parameter for our model. Applying the chain rule to
model the joint probability logp(S|I,θ) over S, we could get

logp(S|I,θ) =
N

∑
t=0

logp(St |I,θ ,S0, . . . ,St−1), (2)

where St is the t-th word in caption S. So the authors in [2],
model the conditional probability p(St |I,θ ,S0, . . . ,St−1) us-
ing the LSTM, which is a special form of recurrent neural net-
work. To be more specific, at the time-step t−1, treat the hid-
den state ht−1 as a nonlinear representation of I,θ ,S0, . . . ,St−2
and given the word St−1, then calculate ht−1 = f (ht−2,St−1).
Finally, model p(St |I,θ ,S0, . . . ,St−1) using pt =Softmax(ht−1).
The pt is the conditional probability distribution over the whole
dictionary, which suggests the word to generate at the time-
step t.
One more thing need to be specifically addressed here is that
authors in [2] used Convolution Neural Network to initialize
S0.

3. Training Methods
We firstly provide a brief overview on data preprocessing pro-
cedures and then discuss how we trained the model.
Data Preprocessing We used MSCOCO 2014 datasets to
train and test our model. MSCOCO 2014 dataset contains
82783 training images and 40504 testing images. Each im-
age come with 5 human captions. In the validation set, there
are 128 images have 6 human captions and 3 images have 7
human captions, but this shouldnt affect our result much.



Show and Tell: A Neural Image Caption Generator — 2/4

In order to load this dataset, we wrote our own dataset class
CoCoDataset() in the data_loader.py. We also cus-
tomized a dataLoader to read a tuple of (images, captions,
caption lengths) in batch. Since human captions have vari-
ous lengths, so we padded all the captions to the maximal
length in each batch. The caption lengths variables are used
to record the true length of a caption, which is beneficial
when computing losses. We also wrote a coco_batch func-
tion to create mini-batch tensors from a list of tuples. For data
augmentation, we used a random crop with the size of (224,
224), random horizontal flip and normalization. Finally, we
convert all image to RGB format, so we always have 3 chan-
nels. In order to accelerate our training speed, we also wrote
a resize.py to resize and save all the training image to
the size of (256, 256, 3).We use 256 because the image size
needs to be greater than 224 for the random cropping.
The actual training can be divided into two stages, using the
CNN to code image and using the LSTM to generate captions.
Also the loss is calculate after we generate the caption for
each training (I,S) pair. Details are described below.
Image Encoding
resnet152 pre-trained on the ImageNet is used a image
encoder, where we only change and trained the last fully con-
nected layer to accommodate our needs that pass the image
embedding to as the input for the LSTM at the time-step 0.
In later experiments, we also attempted to fine tune the last
block of the resnet152 to the how this affects the final
model performance.
Caption Generation Firstly, we one-hot encode all captions
to vectors to desired fixed size, which was done by the file
generate_vocab_dict.py. To be specific, We tokenized
all the captions and calculate the word frequency. Then set a
threshold on frequency and merge those less-frequent words
to the <<unknown>> token. We also introduced <<start>>,
<<end>> and <<padding>>tokens. Finally we derived a
vocabulary, vocab, of 9957 different tokens.
Second, to train the LSTM neural nets, we fed each one-hot-
encoded word St , t = 1,2, ...,N vector to a word-embedding
layer, which produces a word embedding vector. Then we
sent this word embedding vector to the LSTM cell to predict
St+1. This procedure can be formally described below,

x−1 = CNN(I)

xt =WeSt

ht = LSTM(xt) t ∈ {0,1,2, ...,N}
pt+1 = Softmax(ht) (3)

The Class Decoder in the file model_V2_dropout0.py
implements aforementioned procedures. In each batch, since
we padded all the captions, so we stripped the <<padding>>
before we fed captions to the LSTM cells.
Loss and Metric. The loss is calculate as

L = ∑
(Ii,Si)∈D

L(Ii,Si) = ∑
(Ii,Si)∈D

Ni

∑
t=1

−logpt(Si
t). (4)

We use the training loss as a criteria to terminate the training
process, that is when there is no significant improvement on
the training loss we stop the training.
We mainly use BLEU-4 scores, which are calculated on the
validation datasets, as the criteria to evaluate the quality of
the generated captions, where the captions are generated based
on the maximal probability rule. To be more specific, Wordt =
Vocab[argmax(pt)], where the Vocab is generated from the
one-hot encoded captions.

4. Experimental Results
We did following groups of experiments.

• Use various number of the LSTM layers to see how the
complexity of our decoder affects the training loss and
BLEU-4 score.

• Add dropout layer at the end of LSTM layers and use
different dropout rate to see how training loss and the
BLEU-4 score are affected.

• Fine tune the resnet152 to see how much we can
further improve the training loss and BLEU-4 score.

• Compare the model we implemented here and the ad-
vanced version proposed by [3] to conceptually see
how attention affect the performance.

Choice of Hyperparameters
We used resnet152 with fine tuned last fully connected
layers as our image encoder throughout the most of the ex-
periments, only one exception will be mentioned later.

• Using 1, 3, 5 and 10 layers of LSTM cell(s) (without
dropout)

• Using 0.2, 0.5 dropout rate in the decoder with 3 layers
of LSTM cells

• Comparing the locked dropout with the normal dropout
in the decoder with 3 layers of LSTM cells

• no dropout for both the model we implemented (resnet152
+ 3-layered-LSTM) and the one proposed in [3]

Lastly. We compare the encoder with the only fine-tuned last
fully connected layer with one with the fine-tuned last block
and the last fully connected layer.
Traning and Validaiton Results.
First, we present the loss curve for the model with/without at-
tention and corresponding BLEU-4 score gain the basic ideas.
The rest of comparisons are similar, hence will be summa-
rized in tables for simplicity.



Show and Tell: A Neural Image Caption Generator — 3/4

Figure 1. The loss curve and the average BLEU-4 score for
two models.

The Table 1 tries to show the impact of LSTM layers. We can
see the 3 Layers gives the best BLEU-4 score.

number of LSTM layers BlEU-4 Score Training Loss
1 0.33103 1.8058
3 0.33109 1.9128
5 0.32192 2.1484
10 0.247716 4.5569

Table 1. Compare how number of LSTM layers affects the
training loss and BLUE-4 scores.

The Table 2 shows that only use dropout at the image encoder
will give the best BLEU-4 score.

Apply Dropout Rate BlEU-4 Score Training Loss
Encoder 0.2 0.33117 1.9500
Encoder 0.5 0.33692 1.7687
Decoder 0.2 0.32837 3.4942
Decoder 0.5 0.32675 5.5146
Both 0.2 0.33550 3.3468
Both 0.5 0.32923 5.4706

Table 2. Compare how dropout rate affects the training loss
and BLUE-4 scores.

The Table 3 shows that fine tuning the last block and the last
fully connected layer indeed improves the model a lot. Of
course, it takes more time to train.

Fine-tune BlEU-4 Score Training Loss
Last fc layer 0.33117 1.9500
Last fc layer + Last Block 0.35371 1.7059

Table 3. Compare how fine-tune affects the training loss and
BLUE-4 scores.

Inference: Caption Generation. We do observe that gen-
erally the model with attention mechanism can generate cap-
tions making more sense, but the model we trained here seems
to have better generalization ability. For example, we fed the
following figure that is not from the validation set to both
models. The generated caption for our model is <<start>>
two dogs are playing with a frisbee in the grass. <<end>>
while the attention model can only generate <<start>> a
dog with a frisbee in its mouth.<<end>>. It shows that our
model can identify two dogs while the model with attention
can only identify one.

Computation Time. The experiments are done separately on
the AWS and Blue Waters. The total time spent on the Blue
waters are approximately 450 hours while we spent around
230 hours on the AWS (Approximately 230 * 2.5=575 com-
putation hours on Blue Waters).
Supplements. All the supporting code can be found at the
Github repository. The code contains a README file, which
describes our organization of code in details.

5. Discussion
For this final project, our group implemented the Neural Im-
age Caption(NIC) generator model, one end-to-end neural
network that could automatically generate a reasonable de-
scription for the input image using plain English. This neural
network model combines a convolution neural network(CNN)

https://github.com/Rothdyt/Projects/tree/master/Show-and-tell


Show and Tell: A Neural Image Caption Generator — 4/4

with a recurrent neural network(RNN). The CNN could en-
code the image into a compact representation and the RNN
as a decoder could generate a meaningful sequence. Exper-
iments are based on the MSCOCO 2014 dataset. Reason-
able captions generated from our trained model shows that
the NIC model is robust in qualitative results. Also differ-
ent choices of hyper-parameters are tested, where the best
test BLEU-4 score is 0.35371 comparing to the theoretical
BLEU-4 0.301. For the future, we believe better encoding
and decoding neural network could be further developed along
with refined image representation, RNN architecture and im-
proved optimization algorithms. Therefore, such kind of Neu-
ral Image Caption model is expected to perform better than
human.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[2] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3156–3164,
2015.

[3] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. Show, attend and tell: Neural image cap-
tion generation with visual attention. In Francis Bach
and David Blei, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 2048–
2057, Lille, France, 07–09 Jul 2015. PMLR.


	Introduction
	Model architectures
	Training Methods
	Experimental Results
	Discussion

