Show and Tell
– A Neural image caption generator

Presented by Siqi Miao

Team Members: Siqi Miao, Shicheng Zhou, Ketong Xie
Overview

1. Results
2. Experiments
3. Possible Future Improvements
Results – Dataset used

Training set:
118k images from MSCOCO 2017

Validation set:
5k images from MSCOCO 2017

Testing set:
41k images from MSCOCO 2014

• No available server found for evaluating testing set of MSCOCO 2017
• No overlap between training set of MSCOCO 2017 and testing set of MSCOCO 2014
• Testing set of MSCOCO 2017 and MSCOCO 2014 differ only ~100 images
Results – Performance of a single model

Scores can be found at:
http://cocodataset.org/#captions-leaderboard
https://competitions.codalab.org/competitions/3221#results

<table>
<thead>
<tr>
<th>User</th>
<th>BLEU-1</th>
<th>BLEU-2</th>
<th>BLEU-3</th>
<th>BLEU-4</th>
<th>METEOR</th>
<th>ROUGE-L</th>
<th>CIDER-D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c5</td>
<td>c40</td>
<td>c5</td>
<td>c40</td>
<td>c5</td>
<td>c40</td>
<td>c5</td>
</tr>
<tr>
<td>siqimiao</td>
<td>0.721</td>
<td>0.896</td>
<td>0.551</td>
<td>0.805</td>
<td>0.412</td>
<td>0.695</td>
<td>0.309</td>
</tr>
<tr>
<td>Google</td>
<td>0.713</td>
<td>0.895</td>
<td>0.542</td>
<td>0.802</td>
<td>0.407</td>
<td>0.694</td>
<td>0.309</td>
</tr>
</tbody>
</table>

*Both evaluated on testing set of MSCOCO 2014

Google used ensembling models!

<table>
<thead>
<tr>
<th>User</th>
<th>BLEU-1</th>
<th>BLEU-2</th>
<th>BLEU-3</th>
<th>BLEU-4</th>
<th>METEOR</th>
<th>ROUGE-L</th>
<th>CIDER-D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c5</td>
<td>c40</td>
<td>c5</td>
<td>c40</td>
<td>c5</td>
<td>c40</td>
<td>c5</td>
</tr>
<tr>
<td>siqimiao</td>
<td>0.724</td>
<td>-</td>
<td>0.554</td>
<td>-</td>
<td>0.416</td>
<td>-</td>
<td>0.314</td>
</tr>
</tbody>
</table>

*Evaluated on validation set of MSCOCO 2017
Results – Details of our best model – Loss

- Trained for 21 epochs
- Best performance at 18^{th} epoch
- 133.86 GPU hours used for this single model

Loss at 18^{th} epoch*
- Training loss: 2.372
- Validation loss: 2.306

*1) Have dropout layer;
2) Accumulate training loss during training (under model.train());
3) Calculate validation loss separately (under model.eval()).
1. Data augmentation and transformation
 - Resize every image to (224, 224) directly
 - Apply random changes via ColorJitter
 - Flip images horizontally with p=0.5
 - Apply z-score normalization

2. Model architecture
 - Pretrained ResNet152
 - Retrain its FC layer
 - Image embedding size = 512
 - LSTM
 - One layer
 - Hidden size = 512
 - Word embedding size = 13003x512

3. Regularization
 - Dropout both for CNN and RNN
 - L2 weight decay for ADAM optimizer

4. Minor details
 - Clip Gradients to [-5, 5]
 - To avoid exploding gradients
 - Use ADAM optimizer with learning rate decay
 - Need to take care of overflow in BWs
 - Beam search with a size of three
 - Suggested by Google for this model
Results – Details of our best model – Training procedure

Epoch 1-6:
- Learning rate = $10^{-4} = 0.0001$
- Weight decay = $10^{-4} = 0.0001$

Epoch 7-10
- Learning rate = $10^{-5} = 0.00001$
- Weight decay = $10^{-5} = 0.00001$

Epoch 11-13
- Learning rate = $10^{-6} = 0.000001$
- Weight decay = $10^{-6} = 0.000001$

Epoch 14-18
- Learning rate = $10^{-6} = 0.000001$
- Weight decay = 0

Epoch 19-21
- Learning rate = $10^{-7} = 0.0000001$
- Weight decay = 0

a) Epoch 1-10: Freeze weights of ResNet152 except the FC layers; batch size = 128; ~4h/epoch
b) Epoch 11-21: Unfreeze weights and fine-tune CNN; batch size = 16; ~13h/epoch
c) Train LSTM and Word Embedding layers all the time
Results – Some resulting captions

beam size = 3; randomly selected from testing set
beam size = 3; randomly selected from testing set

STK a group of people flying kites in the sky. EDK

STK a hotel room with a bed and a window. EDK

STK a group of sheep standing on top of a lush green field. EDK

STK a man sitting at a table with a plate of food. EDK

STK a variety of fruits and vegetables on display. EDK

STK a couple of people sitting on a bench in the sand. EDK
Results – Some resulting captions

beam size = 3; randomly selected from testing set

STK a little girl eating a slice of pizza. EDK
STK a banana sitting on top of a white plate. EDK
STK two horses pulling a carriage down a street. EDK
STK two parking meters sitting next to each other. EDK
STK a woman is sitting on a toilet seat. EDK
STK a man in a suit and tie posing for a picture. EDK
Experiments – Pretrained word embeddings?

Model 1 (with weights of ResNet and Word Embeddings freezeed)
• SGD optimizer
• ResNet101
• Pretrained GloVe word embedding with size = 17003x300
• No regularization techniques used
• Trained for 22 epochs with ~66 hours used

Results
• Overfitted easily
• Generated captions are bad but readable
• Pretrained word embeddings may not help
 • The initial learning rate of SGD can be as high as 2.0
Experiments – No regularization?

Model 2 (with weights of ResNet freezed)
• ADAM optimizer
• ResNet101
• Randomly initialized word embeddings with size = 13003x512
• No regularization techniques used
• Trained for 14 epochs with ~45 GPU hours used

Results
• Overfitted extremely fast
• Results are OK on valset
 • BLEU-4 = ~0.270

Plotted via TensorBoardX
Experiments – ResNet101?

Model 3 (with similar training procedure of our best model)
- ADAM optimizer
- ResNet101
- Randomly initialized word embeddings with size = 13003x512
- Dropout and L2 weight decay added
- Trained for 31 epochs with ~142 GPU hours used

Results
- No obvious overfitting
- Results are good on valset
 - BLEU-4 = ~0.307
Experiments – Our best model

Model 4 (with the training procedure introduced before)
• ADAM optimizer
• ResNet151
• Randomly initialized word embeddings with size = 13003x512
• Dropout and L2 weight decay added
• Trained for 21 epochs with ~134 GPU hours used

Results
• No obvious overfitting
• Results are better on valset
 • BLEU-4 = ~0.314

Plotted via TensorBoardX
Keys of training
• Randomly initialized word embedding
• Dropout and L2 weight decay
• ADAM optimizer with learning rate decay
• Train RNN first then train both CNN and RNN

Dropout for CNN

```python
if dropout_prob:
    self.fc_output = nn.Sequential(
        nn.Linear(pretrained_cnn.fc.in_features, pretrained_cnn.fc.in_features),
        nn.ReLU(),
        nn.BatchNorm2d(pretrained_cnn.fc.in_features),
        nn.Dropout(p=dropout_prob),
        nn.Linear(pretrained_cnn.fc.in_features, no_word_embeddings)
    )
else:
    self.fc_output = nn.Linear(pretrained_cnn.fc.in_features, no_word_embeddings)
```

Dropout for RNN

```python
if dropout_prob:
    self.fc_output = nn.Sequential(
        nn.Linear(hidden_size, hidden_size),
        nn.ReLU(),
        nn.BatchNorm2d(hidden_size),
        nn.Dropout(p=dropout_prob),
        nn.Linear(hidden_size, vocab_size)
    )
else:
    self.fc_output = nn.Linear(hidden_size, vocab_size)
```
Possible Future Improvements

a) Try ensembling models

b) Add attention systems
Thank You!