
ECE598: Representation Learning Fall 2017

Lecture 10: Training of Neural Networks

Lecturer: Prof. Pramod Viswanath Scribe: Tao Sun, Sep 28, 2017

10.1 Neural Networks: Recap

Artificial Neural Networks were developed stimulated by the behavior of brains as networks of
neurons[RHW85, MP43]. Each neuron receives signals through synapses controlling the strength
of the signal on the neuron. The network is activated by input nodes providing signals, and this
activation spreads out the network along the weighted connections. Figure 10.1(a) presents a
schematic view of an artificial neuron, showing the 3 basic components of the neuron: (1) The
synapses or connections with weights wi, associated with the input value xi, for i = 1, 2, ...m.
(2) An adder sums the weighted input values to compute the input to the activation function,
v = w0 +

∑m
i=1wixi, where w0 is called the bias. (3) An activation function g that maps v to g(v),

giving the output of the neuron. The two most common choices of g are the hyperbolic tangent
tanh(x) = e2x−1

e2x+1
, and the sigmoid function σ(x) = 1

1+e−x . Sometimes in order for simplicity, people
use one circle to represent both the input summation and the output activation function evaluation.

Among different neural netowrk architectures, feedforward neural networks (FNNs) are of extreme
importance because they form the basis of many commercial applications. Figure 10.1(b) shows a
schematic view of a FNN, where there is no feedback connections (the network is acyclic). The first
layer is the input layer, consisting of neurons that simply generate the input signals. Successive
layers are formed with different number of neurons. The outputs of neurons in one layer are the
inputs to the neurons in the next layer. The last layer is called output layer. The layers between the
input and output layers are called hidden layers. When the network is used for predict a numerical
quantity, there is normally only one neuron in the output layer. When the network is used for
classification, the output layer may have many neurons showing the probability of the corresponding
class. There are connections between successive layers, each connection transfers the output of a
neuron i in the current layer to the input of a neuron j in the next layer, with a weight wij . The
input pj(t) to the neuron j in layer t is calculated from the outputs oi(t− 1) of predecessive neurons
in layer (t− 1) as pj(t) = w0 +

∑
i oi(t− 1)wij , where w0 is the bias. The output oj(t) is calculated

with the activation function of neuron j as oj(t) = g(pj(t)).

The outputs of all the neurons in the network are computed with a forward pass fashion. The
algorithm starts with the first hidden layer, with the input layer providing all the input signals. The
neuron outputs are computed for all neurons in the first hidden layer by performing the relevant
weighted summation and activation function evaluations. These outputs are the inputs for the
neurons in the second hidden layer. Again the relevant weighted summation and activation function
evaluation are performed to compute the outputs of the neurons in the second hidden layer. This
continues layer by layer until reaching the output layer and the outputs are generated. Inside FNNs,
there are no feedback connections in which outputs of the model are fed back into itself.

Other neural network architectures such as recurrent neural networks with feedback connections
and convolutional neural networks with translation invariance characteristics could be referred to
Lecture 9. Here in this brief recap we do not cover those details.

1

Figure 10.1: (a)A schematic artificial neuron, with xi representing input signals, wi representing
corresponding weights. g is the activation function and y is the output. Notice that the input x0 = 1
actually added the bias w0 into the system. (b)A schematic feedforward neural network, with the
input layer, hidden layers and output layer.

10.2 Objective Functions

In order to train the parameters w of the neural network, we need to have an objective function.
When the neural network is used to predict a numerical value, the objective function is simply the
averaged square error with respect to input samples.

J =
1

2N

∑
X

(y − ŷ(X,w))2,

where X’s are the training sets, with N examples. y’s are the true output and the ŷ’s are the
estimations from the neural network.

When the neural network is used to do binary classification, the objective function is

J = −
∑

(X,y)∈S

y log ŷ(X,w) + (1− y) log(1− ŷ(X,w)),

where y ∈ {0, 1} is the true classifier while ŷ ∈ {0, 1} is the estimated classifier. Similarly for
problems with multiple classes, the objective function is

J = −
∑

(X,yk)∈S

K∑
k=1

yk log ŷk(X,w).

A central problem in neural networks and other machine learning techniques is how to prevent
overfitting, so that the model performs well not only for training set but also for testing set.
Regularization is used to modify the algorithm to reduce its variance significantly while not overly
increasing the bias. Here, we perform parameter norm penalties which limits the capacity of the
model by adding a parameter norm penalty Ω(θ) to the objective function J . The L2 parameter
regularization is as the following.

J̃(w;X,y) =
α

2
wTw + J(w;X,y),

as is used in usual way, the L2 regularization would insure the direction along which the parameters
contribute significantly to reducing the objective function are preserved relatively intact, while

2

the direction along which the parameters do not contribute to reducing the objective function
significantly are decayed away. This could shrink the weights on features having low correlation
with the output target[GBC16].

An alternative is to use L1 regularization,

J̃(w;X,y) = α||w||1 + J(w;X,y),

which could result in a solution in which some parameters have an optimal value of zero. This
property induced by L1 norm could be used as a feature selection mechanism, suggesting some
features could be safely discarded[GBC16].

10.3 Backpropagation Algorithm

We now have the objective function J , the next step is to obtain the derivatives of J with respect
to all the neural network parameters w, in order to use them in the successive optimization with
gradient based method. This is achieved by recursively using chain rule.

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

Here we consider acyclic networks with directed edges, such as FNNs. Without loss of generality,
the network is structured in different layers, with neurons in layer (t+ 1) getting all their inputs
from the outputs of neurons in layer t. Assume the general output of the network is f ∈ R, which
could represent the cost function J . Then we have the following theorem.

Theorem 10.1. To compute the derivative of f with respect to the parameters w, it suffices to
compute ∂f/∂p for every neuron, where p is the input value of the corresponding neuron.

We know that the input value p of a neuron at layer t is calculated as p(t) =
∑

j wjoj(t− 1), where
oj(t − 1) is the the output of neuron j in layer (t − 1) that is connected to the target neuron in
layer t. Then it is obvious by the chain rule

∂f

∂wi
=

∂f

∂p(t)

∂p(t)

∂wi
=

∂f

∂p(t)
oi(t− 1),

where the oi(t− 1)’s are already known through forward propagation.

Backpropagation algorithm emerges by computing the partial derivatives in the reverse direction.
The messages are passed through the backward direction from the higher-index layers to lower-index
layers, based on the following fashion.

Theorem 10.2. The neuron u receives a message from each of its child neuron from a higher-index
layer. It sums these message to get a number S (if u is the output of the entire network, define
S = ∂f/∂pf) and sends the following message to any of its parent neuron z in a lower-index layer:

S · ∂pu∂pz
. Then at each neuron z, the value S is exactly ∂f/∂pz.

3

The proof of the theorem could be achieved through inductions[AM16]. First look at the base case, at
the output layer, this is true, since ∂f/∂pf = S. Suppose the claim to be true for neurons u1, u2, ...um
at layer (t+ 1). Then for their common parent neuron z at layer t, by hypothesis, neuron z receives
∂f
∂puj

∂puj
∂pz

from each of the uj . By chain rule, the S value for z is S =
∑m

j=1
∂f
∂puj

∂puj
∂pz

= ∂f/∂pz.

This completes the induction proof. Then we take a look at the message sent.

S · ∂pu
∂pz

= S · ∂pu
∂oz

∂oz
∂pz

= S · wzu ·
∂

∂pz
g(pz),

where g is the activation function of the neurons. As stated in Section 10.1, the common choices for
the activation function are hyperbolic tangent function and the sigmoid function, the derivatives of
both could be obtained easily.

Clearly, the amount of work done by each neuron (receiving messages, summation, derivative
computation and sending messages) is proportional to its degree, thus the overall work done are
the summation of the degree of the network. The running time is linear O(V + E). The above
theorems give the following backpropagation algorithm. This deals with a simplified version where
all variables are scalars. The more general case involving tensors could be referred to [GBC16].

Algorithm 1 The Backpropagation Algorithm

Require: Observations X = {x(1), x(2), ..., x(n)}T , neural network w with n layers.
Ensure: The derivatives of output f with respect to parameter set w
1: Forward propagation to calculate the output with X as the input.
2: Initialization derivatives[n] = ∂f/∂pf
3: for j=n-1 down to 1 do
4: derivatives[j] =

∑
i∈Children(j) derivatives[i]

∂pi
∂pj

5: =
∑

i∈Children(j) derivatives[i] · wji ·
∂
∂pj

g(pj)

6: end for

10.4 Gradient Descent based Optimization Methods

We have obtained the derivatives of the loss function (or output) with respect to the neural network
parameters w, now we need to optimize these parameters based on the gradient, to achieve the
minimum loss. Gradient descent method is one of the most popular optimization algorithms for
neural networks. Although it is widely used, there are still some challenges. Here we introduce the
gradient descent variants and other algorithms developped based upon it.

10.4.1 Gradient Descent Variants

Batch gradient descent computes the gradient of the cost function with respect to the parameter
w for the entire training dataset:

w = w − η · ∇wJ(w;X,y)

We need to calculate the gradients for the whole dataset to perform only one update. This shows
the batch gradient descent could be quite slow and intractable for data not fit in memory. It also

4

does not allow updating the parameters with new coming examples on-the-fly. Another problem
with the batch gradient descent is that it may got stuck at the local minima, especially when the
objective function is non-convex.

Stochastic gradient descent (SGD) instead performs a parameter update for each training
example x(i) and y(i).

w = w − η · ∇wJ(w;x(i), y(i))

Note that shuffle the training data at each epoch is required. SGD removes the redundant gradient
calculation by performing one update at a time. It is usually much faster and could be used for
on-line learning. The frequent updates of SGD could have a high variance, causing the objective
function to fluctuate heavily[Rud16]. This fluctuation may cause SGD to jump out of the current
local minima and moves to new and potentially better local minima. On the other hand, the
fluctuation may also lead to overshooting so we never get a converged solution.

Mini-batch gradient descent takes the n samples each time and performs an update, where
n = 50 ∼ 256.

w = w − η · ∇wJ(w;x(i:i+n),y(i:i+n))

By using part of the examples, the mini-batch gradient descent could still maintain a fast approach,
at the same time reducing the variance of the parameter update, leading to more stable convergence.
Mini-batch gradient descent is typically the choice when training a neural network. However, it still
faces some difficulties as (1) It is difficult to choose a proper learning rate to achieve fast convergence
and avoid overshooting. (2) The same learning rate applied to all parameter updates may not be
able to fit the characteristics of the dataset, like sparsity. (3) The algorithm may get trapped in
local minima or saddle points for highly non-convex objective functions. We may need some other
extentions.

10.4.2 Stochastic Gradient Descent Extentions

Momentum method is a method dampens oscillations and helps accelerate SGD convergence
in the vicinity of local optima where the surface curves are much steeper in one direction than
another[Qia99].

vt = γvt−1 + η∇wJ(w;x(i), y(i))

w = w − vt
where γ is usually set to be 0.9 or a similar value. The name momentum stems from an analogy to
momentum in physics: the weight vector w, thought of as a particle traveling through parameter
space, incurs acceleration from the gradient of the loss. Unlike in classical stochastic gradient
descent, it tends to keep traveling in the same direction, preventing oscillations.

Nesterov accelerated gradient (NAG) could prevent from going too fast by momentum method
and increase responsiveness of the results[Nes83].

vt = γvt−1 + η∇wJ(w − γvt−1;x(i), y(i))

w = w − vt

5

where we get an approximation of the next position of the parameters by calculating w − γvt−1,
and then update. Again the value of γ is 0.9 or similar.

Now we could adapt the parameter update to the slope of the cost function and speed up SGD in
turn. We would also like to adapt the parameter update to each features of the input examples, to
make a decision about large or small updates depending on their importance.

Adagrad is an algorithm for gradient-based optimization that performs larger updates for infrequent
parameters and smaller updates for frequent parameters[DHS11]. For this reason it is well suited to
deal with sparse data. Unlike previously used the same learning rate η for all parameter w, Adagrad
uses a different learning rate for each parameter wi at each time step t.

gt,i = ∇wtJ(wt,i;x
(i), y(i))

Gt,ii =

t∑
τ=1

g2τ,i

wt+1,i = wt,i −
η√

Gt,ii + ε
gt,i

where Gt ∈ Rd×d is a diagonal matrix with its ith diagonal element to be the sum of the squares of
the gradient with respect to wi up to time step t, while ε is a smoothing term avoiding division by
zero. Now we could vectorize the implementation

wt+1 = wt −
η√
Gt + ε

� gt

Adagrad’s main benefits is that it does not need to ajust the learning rates for different features
manually, the learning rates will ajust themselves automatically depending on how important the
corresponding features are. The main weakness of Adagrad is its accumulation of the squared
gradients in the denominator, which could end up as a huge value, making the learning rate to
shrink to some value close to zero, and the objective function could no longer be able to proceed
toward the minima.

Adadelta is an extension of Adagrad seeking to reduce its aggressive, monotonically decreasing
learning rate[Zei12]. Instead of accumulating all past squared gradients, Adadelta restricts the
window of accumulated past gradients to some fixed size k.

gt = ∇wtJ(wt;x
(i), y(i))

E[g2]t = γE[g2]t−1 + (1− γ)gTt gt

∆wt = − η√
E[g2]t + ε

gt = − η

RMS[g]t
gt

wt+1 = wt + ∆wt

It should be noted that the units in this update do not match, the update does not have the same
hypothetical units as the parameter. To resolve this, the updat scheme is modified as

E[∆w2]t = γE[∆w2]t−1 + (1− γ)∆w2
t

RMS[∆w]t =
√
E[∆w2]t + ε

6

∆wt = −RMS[∆θ]t−1
RMS[g]t

gt

wt+1 = wt + ∆wt

We do not even need to set a default learning rate, since it has been eliminated from the update
rule.

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton[HSS]. It
was developed independently from Adadelta around the same time in order to solve Adagrad’s
radically diminishing learning rates. The update scheme is as the following.

E[g2]t = γE[g2]t−1 + (1− γ)gTt gt

wt+1 = wt −
η√

E[g2]t + ε
gt

RMSprop as well divides the learning rate by an exponentially decaying average of squared gradients.
The suggestions for the default values are γ = 0.9 and η = 0.001.

Adaptive Moment Estimation (Adam) is another method that computes adaptive learning
rates for each parameter[KB14]. In addition to storing an exponentially decaying average of past
squared gradients vt like Adadelta, Adam also keeps an exponentially decaying average of past
gradients mt.

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2t

where mt and vt are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively. As mt and vt are initialized as vectors of 0’s,
during the initial steps they are found to be biased towards zeros. So a bias-corrected estimates are
given, instead.

m̂t =
mt

1− (β1)t

v̂t =
vt

1− (β2)t

wt+1 = wt −
η√
v̂t + ε

m̂t

The proposed default values are β1 = 0.9, β2 = 0.999 and ε = 10−8. Empirically the Adam works
well in practice and compares favorably to other adaptive learning methods.

AdaMax borrows the idea from Adam that the update rule scales the gradient inversely proportional
to the l2 norm of the past gradients[KB14]. Now generalize this update to lp norm, with the updating
rate β’s also parametrized.

vt = βp2vt−1 + (1− βp2)|gt|p

Norms for large p values generally become numerically unstable. However, l∞ also generally exhibits
stable behavior.

ut = β∞2 vt−1 + (1− β∞2)|gt|∞ = max(β2vt−1, |gt|)

7

wt+1 = wt −
η

ut
m̂t

Notice that ut relies on the max operation and we do not need to compute a bias correction for it.
Good default values are η = 0.002, β1 = 0.9 and β2 = 0.999.

Nesterov-accelerated Adaptive Moment Estimation (Nadam) combines Adam and NAG[Doz16].
The NAG is first modified as the following.

gt = ∇wtJ(wt)

mt = γmt−1 + ηgt

wt+1 = wt − (γmt + ηgt)

Instead of the old NAG method shown before, we now apply the look-ahead momentum vector
directly to update the current parameters. In order to add Nesterov momentum to Adam, we could
similarly replace the previous momentum vector with the current momentum vector. Recall that
the expanded form of Adam is

wt+1 = wt −
η√
v̂t + ε

(β1mt−1
1− (β1)t

+
(1− β1)gt
1− (β1)t

)
Notice that the term mt−1

1−(β1)t is just the bias-corrected estimate of the momentum vector of the

previous time step. We replace it with m̂t−1.

wt+1 = wt −
η√
v̂t + ε

(
β1m̂t−1 +

(1− β1)gt
1− (β1)t

)
Now we could add Nesterov momentum just as we did before by replacing the term m̂t−1 with the
current version m̂t. The final update rule is as the following.

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t

m̂t =
mt

1− (β1)t

v̂t =
vt

1− (β2)t

wt+1 = wt −
η√
v̂t + ε

(
β1m̂t +

(1− β1)gt
1− (β1)t

)

Regarding the above listed algorithms, two tesing case could be found in [Rud16] and the figure
is adaped here shown as the following. Figure 10.2(a) shows a complex loss contours and all the
algorithms start at hte same point and take different path to reach the minimum. It shows that
Adagrad, Adadelta and RMSprop go immediately in the right direction and converge quickly, while
Momentum and NAG are going to the off-track directions. Finally NAG is able to correct its
direction due to the increased responsiveness. Figure 10.2(b) shows the behaviors of different
algorithms at a saddle points. SGD, Momentum and NAG find themselves difficult to break the

8

Figure 10.2: Test cases with different optimization algorithms. (a). Contours of a loss surface (the
Beale function). (b). Saddle point. The figure is adapted from [Rud16], with original source from
Alec Radford.

symmetry, although the latter to finally manage to escape the saddle point. However, Adagrad,
RMSprop and Adadelta quickly head down the negative slope.

In general, when the input data is sparse, or the fast convergence is required for training a
deep/complex neural network, we should choose one of the adaptive learning rate algorithm. Among
all these kind of algorithms, Adagrad suffers from its radically diminishing learning rates. RMSprop,
Adadelta and Adam are developed to overcome this shortage, and they are very similar algorithms
doing well under similar conditions. Kingma et al.[KB14] show that the bias-correction helps Adam
slightly outperform RMSprop toward the end of optimization as gradients become sparser. So
normally Adam might be the best choice.

10.4.3 Additional Materials: A Brief Introduction to TensorFlow*

TensorFlow is Google’s recent open-sourc framework for the implementation and training of large
scale machine learning models, especially for deep neural networks[AAB+16]. The computational
model for TensorFlow is a directed graph, where nodes are functions/computations and edges are
numbers/matrices. Many common machine learning models especially neural networks are visualized
as directed graphs already, using graph computation model makes it natural for machine learning
practitioners. Also by splitting up computation into small, easily differentiable pieces, TensorFlow
could automatically compute the derivative of any node with respect to any other node affecting
the first node’s output using backpropagations. Last it is easy to split the large graph into several
smaller graphs and give each computing unit (CPU or GPU) a separate part of the graph to work on
by having the computation separated, making it much easier to distribute work loads across multiple
computational devices. The characteristic execution model for TensorFlow is briefly summarized as
the following.

1. Dataflow graph elements: In TensorFlow graph, each vertex represents a unit of local com-
putation, and each edge represents the output from or input to, a vertex. The values that
flow along edges are referred to as tensors. The input/output data (usually n-dimensional
arrays) is modeled as tensors, because tensors naturally represent the inputs to and results
of the common mathematical operations in machine learning algorithms. The computation
at vertices are referred to as operations. An operation takes m ≥ 0 tensors as input and

9

produce n ≥ 0 tensors as output. The graph also has stateful operations containing mutable
states, that could be shared between different executions of the graph. Data flow with mutable
state enables TensorFlow to mimic the functionality of a parameter server with additional
flexibility.

2. Partial and concurrent execution: TensorFlow uses a dataflow graph to represent all possible
computations in a particular application. It allows the user to specify declaratively the
subgraph that should be executed. TensorFlow also supports multiple concurrent executionss
on the same graph through shared variables and queues. The implementations of mutable state
and coordination via queues make it possible to specify a wide variety of model architectures
for users. This increases the TensorFlow’s flexibility significantly.

3. Distributed execution: data flow simplifies distributed execution due to the explicit com-
munications between subcomputations. TensorFlow places operations on devices (CPU’s or
GPU’s) subject to implicit or explicit constraints in the graph. The placement algorithm
computes a feasible set of devices for each operation, calculates the sets of operations that
must be colocated and selects a satisfying device for each colocation group. In addition, users
could also specify partial device preferences and the placement algorithm would take those
into consideration. This gives TensorFlow great flexibility in how operations in the dataflow
graph are mapped to devices. Once the operations in a graph have been placed, and the
partial subgraph has been computed for a step, TensorFlow partitions the operations into
per-device subgraphs. A per-device subgraph for device d contains all of the operations that
were assigned to d, with additional Send and Recv operations that replace edges across device
boundaries.

The above execution model characteristics make TensorFlow a flexible and powerful platform for
building and training large scale neural networks.

10

Bibliography

[AAB+16] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[AM16] Sanjeev Arora and Tengyu Ma. back-prop. http://www.offconvex.org/2016/12/20/
backprop/, 2016.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

[Doz16] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[HSS] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine
learning-lecture 6a-overview of mini-batch gradient descent.

[KB14] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[Nes83] Yurii Nesterov. A method of solving a convex programming problem with convergence
rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

[Qia99] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1):145–151, 1999.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[Zei12] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

11

http://www.offconvex.org/2016/12/20/backprop/
http://www.offconvex.org/2016/12/20/backprop/
http://www.deeplearningbook.org

	10.1 Neural Networks: Recap
	10.2 Objective Functions
	10.3 Backpropagation Algorithm
	10.4 Gradient Descent based Optimization Methods
	10.4.1 Gradient Descent Variants
	10.4.2 Stochastic Gradient Descent Extentions
	10.4.3 Additional Materials: A Brief Introduction to TensorFlow*

