Geometries of Word Embeddings

Pramod Viswanath

University of Illinois

Natural language processing is widely used in daily life.

Natural language processing pipeline

Word is the basic unit of natural language.

Representing Words

- Atomic symbols
- Large vocabulary size (~1,000,000 words in English)
- Joint distributions impossible to infer

Words could be represented by vectors.

Word Vector Representations

- Word2Vec (2013)
- Google
- Publicly available
- GloVe (2014)
- Stanford NLP Pipeline
- Publicly available

Principle of Word Vector Representations

"A word is characterized by the company it keeps."
— Firth ‘57

Similar words should have similar vector representations.

Cooccurrence matrix

A series of many genres, including fantasy, drama, coming of age,...
(series, genres) (of, genres)
(many, genres)
(including, genres) (fantasy, genres) (drama, genres)
target words

	\ldots	genres	\ldots
\ldots	\ldots	\ldots	\ldots
series	\ldots	+1	\ldots
of	\cdots	+1	\ldots
many	\ldots	+1	\ldots
including	\ldots	+1	\ldots
fantasy	\ldots	+1	\ldots
drama	\ldots	+1	\ldots
\ldots	\ldots	\ldots	\ldots

PMI matrix is low rank

word2vec (Mikolov '13) and GloVe (Pennington '14)
target word $u(w)$ context word $v(c)$

$$
u(w)^{\mathrm{T}} v(c) \approx \log \left(\frac{p_{W, C}(w, c)}{p_{W}(w) p_{C}(c)}\right)
$$

Word Similarity

Powerful Representations

Lexical
\checkmark Word Similarity
\checkmark Concept Categorization
\checkmark Vector differences encode rules
talk - talking $=$ eat -eating
man - king = woman -queen
France - Paris = Italy - Rome

This talk: Geometry of Word Vectors

- isotropy of word vectors
- projection towards isotropy
- subspace representations of sentences/phrases
- polysemy (prepositions)
- idiomatic/sarcastic usages

Isotropy and Word Vectors

- Start with off-the-shelf vectors
- Word2Vec and GloVe
- Publicly available
- Postprocessing
- Simple
- Universally improves representations

Geometry of word vectors

	avg. norm	norm of avg.	ratio
WORD2VEC	2.04	0.69	$\mathbf{0 . 3 4}$
GLOVE	8.30	3.15	$\mathbf{0 . 3 7}$

Non-zero mean may affect the similarity between words

Spectrum of word vectors

Postprocessing

- Remove the non-zero mean

$$
\mu \leftarrow \frac{1}{|V|} \sum_{w \in V} v(w) ; \quad \tilde{v}(w) \leftarrow v(w)-\mu
$$

- Null the dominating D components

$$
\begin{aligned}
u_{1}, \ldots, u_{d} & \leftarrow \operatorname{PCA}(\{\tilde{v}(w), w \in V\}) \\
v^{\prime}(w) & \leftarrow \tilde{v}-\sum_{i=1}^{D}\left(u_{i}^{\mathrm{T}} v(w)\right) u_{i}
\end{aligned}
$$

Renders off-the-shelf representations even stronger

Lexical-level Evaluation

\checkmark Word Similarity
\checkmark Concept Categorization

Word Similarity

Assign a similarity score between a pair of words
(stock, phone) -> 1.62 (stock, market) -> 8.08

Datasets: RG65, wordSim-353, Rare Words, MEN, MTurk, SimLex-999, SimVerb-3500.

Concept Categorization

Group words into different semantic categories.
bear allocation airstream bull cat allotment blast cow drizzle credit puppy quota clemency

Datasets: ap, ESSLLI, battig

Sentence-level Evaluation

\checkmark Sentential Textual Similarity (STS) 2012-2016

- 21 Different datasets: pairs of sentences
- algorithm rates similarity
- compare to human scores
- Average improvement of 4\%

Postprocessing Generalizes

- Multiple dimensions, different hyperparameters
- Word2Vec and GloVe
- TSCCA and RAND-WALK
- Multiple languages
- Spanish, German datasets
- Universally improves representations

Top Dimensions Encode Frequency

RAND-WALK model

$$
p_{W, C}(w, c)=\frac{1}{Z_{0}} \exp \left(\|v(w)+v(c)\|^{2}\right)
$$

vectors $v(w)$ are isotropic (Arora et al, '16)

PMI matrix is low-rank

$$
\log \frac{p_{W, C}(w, c)}{p_{W}(w) p_{C}(c)} \propto v(w)^{\mathrm{T}} v(c)
$$

Post-processing and Isotropy

Measure of isotropy

$$
\frac{\min _{\|x\|=1} \sum_{w} \exp \left(x^{\mathrm{T}} v(w)\right)}{\max _{\|x\|=1} \sum_{w} \exp \left(x^{\mathrm{T}} v(w)\right)}
$$

	before	after
word2vec	0.7	$\mathbf{0 . 9 5}$
GloVe	0.065	$\mathbf{0 . 6}$

Rounding to Isotropy

- First order approximation of isotropy measure
- subtract the mean
- Second order approximation of isotropy measure
- project away the top dimensions [S. Oh]
- Inherently different
- recommendation systems, [Bullinaria and Levy, '02]
- CCA, Perron-Frobenius theorem

Summary

- Word Vector Representations
- Off-the-shelf — Word2Vec and GloVe
- We improve them universally
- Angular symmetry
- Other geometries?

Sentence Representations

What to preserve?

- Syntax information
- grammar, parsing
- Paraphrasing

Classifier

- machine translation
- Downstream applications
- text classification

Representation by Vectors

- Bag-of-words
- frequency, tf-idf weighted frequency
- Average of word vectors:
- Wieting et al. 2015, Huang et al. 2012, Adi et al. 2016, Kenter et al. 2016, Arora et al. 2017
- Neural networks:
- Kim et al. 2014, Kalchbrenner et al. 2014, Sutskever et al. 2014, Le and Mikolov 2014, Kiros et al. 2015, Hill et al. 2016

Low rank Subspace

"A piece of bread, which is big, is having butter spread upon it by a man."

Sentence word representations lie in a low-rank subspace rank $\mathrm{N}=4$

Sentence as a Subspace

- Input: a sequence of words $\quad\{v(w), w \in s\}$
- Compute the first N principal components

$$
\begin{aligned}
u_{1}, \ldots, u_{N} & \leftarrow \operatorname{PCA}(v(w), w \in s), \\
S & \leftarrow\left[u_{1}, \ldots, u_{N}\right] .
\end{aligned}
$$

- Output: orthonormal basis [Mu, Bhat and V, ACL '17]

Similarity between Sentences

Examples

sentence pair

Ground Predicted Truth Score

The man is doing exercises.

The man is training.
0.82

The man is doing exercises.

$$
0.28 \quad 0.38
$$

Two men are hugging.

The man is doing exercises.

Two men are fighting.
0.4
0.43

Semantic Textual Similarity Task

Collaborators

Hongyu Gong Jiaqi Mu

Suma Bhat

