
Language Model
Introduction to N-grams



Probabilistic Language Model

• Goal: assign a probability to a sentence 


• Application:


• Machine Translation


P(high winds tonight) > P(large winds tonight)


• Spelling Correction


P(about 15 minutes from) > P(about 15 minuets from)


• Speech Recognition


P(I saw a van) > P(eyes awe of an)



How to Compute Language Modeling

• For a given sentence


• Words        are discrete 


• Sequence length      is random


• Goal: probability of an upcoming word


p(wt|w1, ..., wt�1)

s = (w1, ..., wn)

wt

n



Chain Rule of Probability 

The probability of a sentence can be obtained via the 
Chain Rule of Probability

Example

p(its water is so transparent)

=p(its)⇥ p(water|its)⇥ p(is|its water)⇥ p(so|its water is)
⇥ p(transparent|its water is so)

p(s) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|w1, ..., wn�1)



Evaluation of Language Model

real 
frequently observed

ungrammatical 
rarely observed

higher probability

lower probability



Evaluation via Perplexity

The best language model is the one that best predicts 
an unseen sentence

PP (s) = (p((w1, ..., wn)))
� 1

n

=

 
nY

t=1

1

p(wt|w1, ..., wt�1)

! 1
n



Markov Assumption

• Too many possible combinations of 


• Impossible to infer


• Approximation:


• Unigram


• Bigram 


• Higher order approximation…


w1, ..., wt

p(wt|w1, ..., wt�1)

p(wt|w1, · · · , wt�1) ⇡ PW2|W1
(wt|wt�1)

p(wt|w1, · · · , wt�1) ⇡ PW3|W1,W2
(wt|wt�1, wt�2)



Parameter Estimation

• In a bigram language model, parameters are


• Straight forward: the ML estimator


PW2|W1
(w2|w1), 8 w1, w2 2 vocabulary

PW2|W1
(w2|w1) =

count(w2, w1)

count(w1)

count(·, ·)
count(·)

is the number of cooccurrence of a word pair.
is the number occurrence of a word.



An Example

Training corpus:

<s> I am Sam </s>

<s> Sam I am </s>

<s>  I do not like green eggs and ham </s>

Induced parameters:

PW2|W1
(I|hsi) = 2

3

PW2|W1
(Sam|hsi) = 1

3

PW2|W1
(am|I) = 2

3

PW2|W1
(h/si|Sam) =

1

2

PW2|W1
(Sam|am) =

1

2

PW2|W1
(do|I) = 1

3

……



Online Resource

https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-
you.html



Shakespeare as Corpus

• Corpus has 884,647 tokens 


• Vocabulary size V=29,066


• Shakespeare produced 300,000 bigrams out of V^2 = 

844 millions possible bigrams


• 99.96% of the bigram tables are zero (why?)



Practical Issues

• Sparsity


• Things that don’t occur in the training corpus, but 

occur in real life.

Training Corpus Real Applications

… denied the allegations

… denied the reports

… denied the claims

… denied the request

P (o↵er|denied the) = 0

… denied the offer



Smoothing the “Zero”s

Reference: Chen, Stanley F., and Joshua Goodman. "An empirical study of 
smoothing techniques for language modeling." 

When we have sparse statistics, steal probability mass 
to generalize better.



Good Turing Smoothing 

• Consider a scenario, one is fishing and caught 18 fishes

Carp perch whitefish

trout salmon eel

x10 x3 x2

x1 x1 x1

• How likely is that next species is trout?


• Assume there are new species, how likely is it 

that next species is new?


• Now how likely is that next species is trout?




Leave-One-Validation

Use things-we-saw-(k+1)-times to estimate things-we-saw-k-times 

• Take each of one of the fish out in turn


• 18 training sets of size 17, held-out of size 1


• The fraction of held-out fishes are unseen in the training?


• # of fishes occur once / 18 = 3/18


• The fraction of held-out fishes are seen k times in training?


• (# of fishes occur (k+1) times)*(k+1) / 18



Good Turing Smoothing 

• Consider a scenario, one is fishing and caught 18 fishes

Carp perch whitefish

trout salmon eel

x10 x3 x2

x1 x1 x1

• How likely is that next species is trout?


• Assume there are new species, how likely is it 

that next species is new?


• Now how likely is that next species is trout?


1/18

3/18

1/18 * (2/3) = 1/27



Good Turing Smoothing

•          is the number of words that occur     times


•                              is the number of samples 


• A word (with occurrence      ) should occur with probability


Ni i

N =
X

i

iNi

i

(i+ 1)Ni+1

NiN

Good Turing Smoothing



Good Turing

NIPS 2017




Absolute Discounting Smoothing

P (AD)
W2|W1

(w2|w1) =
count(w2, w1)� d

count(w1)
+ �(w1)pW (w2)

discounted bigram
Interpolation weight

unigram distribution

Steal probability mass to unseen samples



Absolute Discounting

P (AD)
W2|W1

(w2|w1) =
count(w2, w1)� d

count(w1)
+ �(w1)pW (w2)

• Some word (e.g. Fransisco) always occurs with other words 
(e.g. San), but this contributes to the unigram distribution.


• Principle of probability


• Choice of continuation distribution!

X

w1

P (AD)
W2|W1

(w2|w1)PW (w1) 6= PW (w2)

glasses | sun

P(glasses) << P(Fransisco)



Kneser-Ney Smoothing

Marginal constraint gives an only solution to the interpolated 
distribution.

�(w) =
d

c(w)
|{w0

: count(w,w0
) > 0}|

P(glasses) > P(Fransisco)

The normalized discount; the probability mass we’ve discounted

The number of 
word types that 

can follow w

P (KN)

W2|W1
(w

2

|w
1

) =

count(w
2

, w
1

)� d

count(w
1

)

+ �(w
1

)P
cont

(w
2

)

P
cont

(w) =
|{w0

: count(w,w0
) > 0}|P

w02vocabulary

|{w0
: count(w,w0

) > 0}|



Trigram and More

• Recursive formulation of KN smoothing

P (KN)
(wn|w1, w2, ..., wn�1) =

max{count(KN)
(w1, w2, ..., wn)� d, 0}

count

(KN)
(w1, w2, ..., wn�1)

+ �(w1, ..., wn�1)P
(KN)

(wn|w2, ..., wn�1)

count

(KN)
(·) =

⇢
# of occurrence of · for the highest order

# of unique word types for · for lower order



Bayesian Interpretation of KN Smoothing

Corpus

Parameters

KN Smoothing Bayesian Inference?
https://www.stats.ox.ac.uk/~teh/research/compling/hpylm.pdf



Smoothing via Context Tree

• Parameterized the conditional distribution of Markov model


•       is a probability vector associated with context 


• Smoothing equals the dependency between        and 

P (w|u = (w1, ..., wn�1)) = Gu(w)

Gu u

G;

Ga

Gfind aGin a G
about a

G
toad in a

Gstuck in a

Gu Gparent(u)



Chinese Restaurant Process

• Chinese Restaurant Process                       is a distribution over 
distributions over a probability space 


• CRP is defined over draws from 

• Sample space is all (unbounded) tables in a restaurant

• A sequence of customers visit this restaurant, and randomly pick 

a table to sit

• The first customer sits at the first table

• The i-th customer chooses his seat after observing the seating 

arrangement.

• Samples from CRP is equivalent to the seating arrangements of 

infinite customers

G1 = CPR(d, ✓, G0)

CRP(d, ✓, G0)



Sample Generation in CRP

• Let       be the table the i-th customer sits


• Let       be the number of customer sitting at table 


• Let       be the number of occupied tables


• W.p.               this customer sits from      ; otherwise, he 

chooses his seat based on current seating arrangement.

xi

ck k

✓+dt.
✓+(i�1) G0

t.

Absolute 
discounting

Continuation 
probability

xi|x1, ..., xi�1, seating arrangement

⇠
t.X

k=1

ck � d

✓ + (i� 1)
�tablek +

✓ + dt.

✓ + (i� 1)
G0

Interpolated 
weight



CRP in Language Model

base distribution   Output distribution   
P (w|w2, ..., wn) P (w|w1, w2, ..., wn)

CRP

• CRP is defined over draws from 

• N-gram distribution is built on (N-1)-gram distribution

Gu(w) ⇠ CRP(d|u|, ✓|u|, Gparent(u)(w))



Neural Network in Language Model

• N-gram models can be thought as classifications


• Discriminative model via neural networks


(w1, ..., wn�1)

history
wn

current word
predict



FNN in Language Model

Reference: http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

context of N words

• N-gram models are inherently classification problem:

• Given the context, predict the next word (one of V classes)

output word

softmax as probability 
distribution

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Curse of N-gram Models

Reference: http://www.fit.vutbr.cz/research/groups/speech/publi/2010/
mikolov_interspeech2010_IS100722.pdf

“The computer which I had just put into the machine room on 
the fifth floor crashed.”

• Language has long-distance dependencies


• Modeling via RNN 
Use this to 
predict the 
next word

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

