Language Model

Introduction to N-grams

Probabilistic Language Model

- Goal: assign a probability to a sentence
- Application:
 - Machine Translation

P(high winds tonight) > P(large winds tonight)

• Spelling Correction

P(about 15 minutes from) > P(about 15 minuets from)

Speech Recognition

P(I saw a van) > P(eyes awe of an)

How to Compute Language Modeling

- For a given sentence $s = (w_1, ..., w_n)$
 - Words w_t are discrete
 - Sequence length n is random
- Goal: probability of an upcoming word

 $p(w_t|w_1, ..., w_{t-1})$

Chain Rule of Probability

 $p(s) = p(w_1)p(w_2|w_1)p(w_3|w_1, w_2) \cdots p(w_n|w_1, \dots, w_{n-1})$

Example

p(its water is so transparent)

 $= p(its) \times p(water|its) \times p(is|its water) \times p(so|its water is) \\ \times p(transparent|its water is so)$

The probability of a sentence can be obtained via the Chain Rule of Probability

Evaluation of Language Model

Evaluation via Perplexity

$$PP(s) = (p((w_1, ..., w_n)))^{-\frac{1}{n}}$$
$$= \left(\prod_{t=1}^n \frac{1}{p(w_t | w_1, ..., w_{t-1})}\right)^{\frac{1}{n}}$$

The best language model is the one that best predicts an unseen sentence

Markov Assumption

- Too many possible combinations of $w_1, ..., w_t$
- Impossible to infer $p(w_t|w_1, ..., w_{t-1})$
- Approximation:
 - Unigram

$$p(w_t|w_1, \cdots, w_{t-1}) \approx P_{W_2|W_1}(w_t|w_{t-1})$$

• Bigram

 $p(w_t|w_1, \cdots, w_{t-1}) \approx P_{W_3|W_1, W_2}(w_t|w_{t-1}, w_{t-2})$

• Higher order approximation...

Parameter Estimation

• In a bigram language model, parameters are

 $P_{W_2|W_1}(w_2|w_1), \quad \forall w_1, w_2 \in \text{vocabulary}$

• Straight forward: the ML estimator

$$P_{W_2|W_1}(w_2|w_1) = \frac{\operatorname{count}(w_2, w_1)}{\operatorname{count}(w_1)}$$

 $\operatorname{count}(\cdot, \cdot)$ is the number of cooccurrence of a word pair. $\operatorname{count}(\cdot)$ is the number occurrence of a word.

An Example

Training corpus:

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

Induced parameters:

$$P_{W_2|W_1}(\mathbf{I}|\langle \mathbf{s} \rangle) = \frac{2}{3} \qquad P_{W_2|W_1}(\operatorname{Sam}|\langle \mathbf{s} \rangle) = \frac{1}{3} \qquad P_{W_2|W_1}(\operatorname{am}|\mathbf{I}) = \frac{2}{3}$$
$$P_{W_2|W_1}(\langle /\mathbf{s} \rangle|\operatorname{Sam}) = \frac{1}{2} \qquad P_{W_2|W_1}(\operatorname{Sam}|\operatorname{am}) = \frac{1}{2} \qquad P_{W_2|W_1}(\operatorname{do}|\mathbf{I}) = \frac{1}{3}$$

Online Resource

All Our N-gram are Belong to You

Thursday, August 03, 2006

```
File sizes: approx. 24 GB compressed (gzip'ed) text files

Number of tokens: 1,024,908,267,229

Number of sentences: 95,119,665,584

Number of unigrams: 13,588,391

Number of bigrams: 314,843,401

Number of trigrams: 977,069,902

Number of fourgrams: 1,313,818,354

Number of fivegrams: 1,176,470,663
```

https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-toyou.html

Shakespeare as Corpus

- Corpus has 884,647 tokens
- Vocabulary size V=29,066
- Shakespeare produced 300,000 bigrams out of V^2 =

844 millions possible bigrams

• 99.96% of the bigram tables are zero (why?)

Practical Issues

- Sparsity
 - Things that don't occur in the training corpus, but occur in real life.

Training Corpus

... denied the allegations... denied the reports... denied the claims... denied the request

P(offer|denied the) = 0

Real Applications ... denied the offer

Smoothing the "Zero"s

When we have sparse statistics, steal probability mass to generalize better.

Reference: Chen, Stanley F., and Joshua Goodman. "An empirical study of smoothing techniques for language modeling."

Good Turing Smoothing

Consider a scenario, one is fishing and caught 18 fishes

- How likely is that next species is trout?
- Assume there are new species, how likely is it that next species is new?
- Now how likely is that next species is trout?

Leave-One-Validation

- Take each of one of the fish out in turn
- 18 training sets of size 17, held-out of size 1
- The fraction of held-out fishes are unseen in the training?
 - # of fishes occur once / 18 = 3/18
- The fraction of held-out fishes are seen k times in training?
 - (# of fishes occur (k+1) times)*(k+1) / 18

Use things-we-saw-(k+1)-times to estimate things-we-saw-k-times

Good Turing Smoothing

Consider a scenario, one is fishing and caught 18 fishes

- How likely is that next species is trout? 1/18
- Assume there are new species, how likely is it that next species is new? 3/18
- Now how likely is that next species is trout?

1/18 * (2/3) = 1/27

Good Turing Smoothing

- N_i is the number of words that occur i times
- $N = \sum_{i} i N_i$ is the number of samples
- A word (with occurrence i) should occur with probability

Good Turing

NIPS 2017

Absolute Discounting Smoothing

Steal probability mass to unseen samples

Absolute Discounting

- Some word (e.g. Fransisco) always occurs with other words (e.g. San), but this contributes to the unigram distribution.
- Principle of probability

$$\sum_{w_1} P_{W_2|W_1}^{(\text{AD})}(w_2|w_1) P_W(w_1) \neq P_W(w_2)$$

• Choice of continuation distribution!

Kneser-Ney Smoothing

$$P_{W_2|W_1}^{(\mathrm{KN})}(w_2|w_1) = \frac{\operatorname{count}(w_2, w_1) - d}{\operatorname{count}(w_1)} + \lambda(w_1)P_{\operatorname{cont}}(w_2)$$

The normalized discount; the probability mass we've discounted

$$\lambda(w) = \frac{d}{c(w)} |\{w' : \operatorname{count}(w, w') > 0\}|$$

$$P_{\operatorname{cont}}(w) = \frac{|\{w' : \operatorname{count}(w, w') > 0\}|}{\sum_{w' \in \operatorname{vocabulary}} |\{w' : \operatorname{count}(w, w') > 0\}|}$$

P(glasses) > P(Fransisco)

Marginal constraint gives an only solution to the interpolated distribution.

Trigram and More

Recursive formulation of KN smoothing

$$P^{(\mathrm{KN})}(w_n|w_1, w_2, ..., w_{n-1}) = \frac{\max\{\mathrm{count}^{(KN)}(w_1, w_2, ..., w_n) - d, 0\}}{\mathrm{count}^{(KN)}(w_1, w_2, ..., w_{n-1})} + \lambda(w_1, ..., w_{n-1})P^{(\mathrm{KN})}(w_n|w_2, ..., w_{n-1})$$

 $\operatorname{count}^{(KN)}(\cdot) = \begin{cases} \# \text{ of occurrence of } \cdot & \text{ for the highest order} \\ \# \text{ of unique word types for } \cdot & \text{ for lower order} \end{cases}$

Bayesian Interpretation of KN Smoothing

https://www.stats.ox.ac.uk/~teh/research/compling/hpylm.pdf

Smoothing via Context Tree

• Parameterized the conditional distribution of Markov model

$$P(w|u = (w_1, ..., w_{n-1})) = G_u(w)$$

• G_u is a probability vector associated with context u

• Smoothing equals the dependency between G_u and $G_{parent(u)}$

Chinese Restaurant Process

- Chinese Restaurant Process CRP(d, θ, G₀) is a distribution over distributions over a probability space
- CRP is defined over draws from $G_1 = CPR(d, \theta, G_0)$
- Sample space is all (unbounded) tables in a restaurant
- A sequence of customers visit this restaurant, and randomly pick a table to sit
 - The first customer sits at the first table
 - The i-th customer chooses his seat after observing the seating arrangement.
 - Samples from CRP is equivalent to the seating arrangements of infinite customers

Sample Generation in CRP

- Let x_i be the table the i-th customer sits
- Let c_k be the number of customer sitting at table k
- Let t. be the number of occupied tables
- W.p. $\frac{\theta+dt}{\theta+(i-1)}$ this customer sits from G_0 ; otherwise, he chooses his seat based on current seating arrangement.

CRP in Language Model

- CRP is defined over draws from
 - N-gram distribution is built on (N-1)-gram distribution

 $G_u(w) \sim \operatorname{CRP}(d_{|u|}, \theta_{|u|}, G_{\operatorname{parent}(u)}(w))$

Neural Network in Language Model

• N-gram models can be thought as classifications

• Discriminative model via neural networks

FNN in Language Model

- N-gram models are inherently classification problem:
 - Given the context, predict the next word (one of V classes)

Reference: <u>http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf</u>

Curse of N-gram Models

Language has long-distance dependencies

"The computer which I had just put into the machine room on the fifth floor crashed."

Reference: <u>http://www.fit.vutbr.cz/research/groups/speech/publi/2010/</u> <u>mikolov_interspeech2010_IS100722.pdf</u>