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13.1 Probabilistic Langauge Models

13.1.1 Introduction

The probabilistic language model is to compute a probability distribution of a sentence of words
sequences of words, i.e. P(s) = P(wj,ws,...,wy), or to compute the probability of an upcoming word,
namely, give a sentence s = (w1, ws, ..., wy ), where w; are discrete words, N is the random-valued
sequence length, the goal is to compute the prabability of an upcoming word P(w|wy, ..., wi—1).

Estimating the probabilistic language model is very useful in many natural language related
applications, in machine translation, language modeling can help with the correct word ording and
word choices, e.g. P(the cat is small) > P(small the is cat), and P(walking home after school) >
P(walking house after school).

13.1.2 The N-gram Model

In probabilistic language models, the probability is usually conditioned on the window of N previous
words. The joint probability of the entire sequences P(s) = P(wi, w2, ...,wy) is decomposed using
the chain rule of probability:

P(wi, oy n) = Plwy) Pwslwy)... P(wnlwr, ooy 1)

(13.1)
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While one straightforward method is to estimate these conditional probabilities directly from relative
frequency counts by taking a very large corpus and counting the number of times of sequence
(w1, ...,w;) and (wq, ..., w;—1), it turns out that it’s hard to have enough data for estimation. This is
because language is creative; new sentences are created all the time, there are too many possible
sentences and we wont always be able to count entire sentences [JM14].

One feasible solution is the N-gram model, where the basic intuition is that instead of computing
the probability of a word given its entire history, we can approximate the history by just the latest
few words.



Unigram : P(wy,...,wy) ~ HP(wi)

i=1
N
Bigrams : P(wi,...,wy) ~ HP(fwi|wi_1) (13.2)
i=1
N
n-grams: P(w1,..,wy) = HP(wi]wi_nH, ey Wi—1)
i=1

Note: Our N-gram model (Eqn. 13.2) is based on the Markov assumption that the probability of a
word depends only on the previous few words, but not too far into the past.

An intuitive way to estimate the probabilities in Eqn. 13.2 is the maximum likelihood estimation
(MLE). We can compute the MLE estimations for N-gram model parameters by counting from a
large corpus and normalizing the counts to generate probabilities:

count(w;_1, w;)

Bigrams : P(w;|w;—1) = count(w;)
(A

13.3

count(Wi—p41, .., W;) (133)

n-grams : P(w;|wi—ni1, ..., wi—1) =
COUNE(Wi— 1y vey Wi—1)

Figure 13.1 is an example of estimating a bigram language model. The first table shows the bigram
counts from a piece of a bigram grammar from the Berkeley Restaurant Project. We can see that
the matrix are sparse (majority of word pairs have zero counts). The second table shows the bigram
probabilities after normalization, which can be used to compute the probability of sentences by
simply multiplying the appropriate bigram probabilities together.

Note: Some practival issues:

e In practice its more common to use higher order n-gram models (i.e., with larger n) when
there is sufficient training data.

e For these larger n-grams, it is necessary to assume extra context to the left and right of the
sentence end.
e.g. to compute trigram probabilities at the very beginning of the sentence, we can use two
pseudo-words for the first trigram (i.e., P(I| < s >< s >)).

e Log Probabilities: Since probabilities are in nature less than or equal to 1, the more
probabilities we multiply together, the smaller the product becomes. Multiplying a large
number of N-grams together would result in numerical underflow. To avoid this problem, we
always represent and compute the language model probabilities in log format. Adding in log
space is equivalent to multiplying in linear space, so we combine log probabilities by adding
them.

13.1.3 Model Evaluation

To evaluate the language model, we train parameters of language models on a training set, and
then test the model’s performance on data we haven’t seen. The most used evaluate metric is called



i want to eat chinese food Ilunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend
i 0.002 033 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0O
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0014 0 0.00092 0.0037 0 0
lunch 0.0059 0O 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Figure 13.1: Example from Berkeley Restaurant Project [JM14]
perplexity (PP).

The perplexity of a language model is the inverse probability of the test set, normalized by the
number of words. For s = (wy, ..., wy), the perplexity of s with a n-gram language model is:

PP(s)= ¥ ——

= chain rule 13.4
il_IlP(wi\wl,...,wil) ( ) ( 3 )
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13.2 Smoothing

Like many statistical models, the N-gram probabilistic language model is dependent on the training
corpus. One practical issue with this is that some word sequences and phrases appear in practice
(or in the test set), may not also occur in the training set. So it is important to train robust models
that generalize well to handel the unseen words and zero probabilities.



To keep a language model from assigning zero probability to these unseen events, well have to shave
off a bit of probability mass from some more frequent events and give it to the events weve never
seen. This modification is called smoothing or discounting. Popular smoothing methods will be
introduced in this section, including:

e Good Turing Smoothing
e Absolute Discounting Smoothing

e Kneser-Ney Smoothing

13.2.1 Good-Turing Smoothing

The Good-Turing estimate [Goo53] states that for any n-gram that occurs r times, we should
pretend that it occurs r* times such that r* = (r + 1)N]§jl, where N, is the number of n-grams
that occur r times in the training corpus. Namely, a word with occurrence r should occur with

probability:

(r+1)Npi1

Plul) =75 S A,

(13.5)

It is shown in [OS15] that for distributions over k symbols and n samples, a simple variant of
Good-Turing estimator is always within KL divergence of (3 + 0,(1))/ n'/? from the best estimator,
and that a more involved estimator is within O, (min(k/n,1/y/n)).

13.2.2 Absolute Discounting Smoothing

The basic idea of the Absolute Discounting Smoothing method [NEK94] is to steal probability mass
to unseen samples. The equation for interpolated absolute discounting applied to bigrams:

count(w;—1,w;) —d

PAD(wi\wi,l) = + )\(wifl)P(wi) (13.6)

count(w;—_1)

where first term is the discounted bigram, the second term is the unigram model P(w;) with
interpolation weight A(w;_1).

Note: While absolute discounting smoothing method (Eqn. 13.6) solves the zero probability problem
with unigram distribution, there are some potential problems for continuation. For example, consider
the task of prediciting the next word in sentence “I cant see without my reading ____”. The word
glasses is more likely to follow and thus should have a higher probability than word Kong. However,
a standard unigram model may assign higher probability to Kong, since Hong Kong is a very
frequent phrase. This issue will be solved with Kneser-Ney Smoothing method in section 13.2.3.

13.2.3 Kneser-Ney Smoothing

Kneser-Ney smoothing algorithm [KN95] roots in absolute discounting method. It solves the issue
stressed in section 13.2.2 by augmenting absolute discounting with a more sophisticated way to
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handle the lower-order unigram distribution. The equation for Interpolated Kneser-Ney smoothing
for bigrams is:

count(w;_1,w;) —d

Pry(wi|wi—1) = + Mwi—1) Peont (wy) (13.7)

count(w;_1)

o Continuation probability: in KN-smoothing, we estimate P,.,,; based on the number of
different contexts words w has appeared in the number of bigram types it completes.

|v : count(vw) > 0|

P =
cont(w) Zw’ |U : count(vw/) > 0|

(13.8)

In this way, a frequent unigram occuring in only one context (e.g. word Kong in context Hong
Kong) will have a low continuation probability.

e Normalizing discount: \(w;_1) is a normalizing constant that is used to distribute the
probability mass we’ve discounted:

Mw;—1) = |w : count(w;—1w) > 0] (13.9)

count(w;_1)
where the first term is the normalized discount, and the second term |w : count(w;_j1w) > 0|
is the number of word types that can follow word w;_1.

Finally, we can generalize Eqn. 13.7 to n-grams with recursive formulation:

maX(CKN(wi_nH, ceey wi) — d, 0)
P w; — e Wi_1) =
KN (Wi Wi—n 11, ey Wim1) Crn (Wi msts ot 1) (13.10)

+ MWi—ng1, s Wi—1) Prev (W5 |Wi—ng2, ..y wi=1)

where count Ckn depends on the order of n-grams being counted:

#occurrence of (-) for the highest order (13.11)
#unique word types for () for lower orders '

Crn() = {

13.3 Neural Language Models

As is introduced in section 13.1.2, the n-grams probabilistic language model is based on the Markov
assumption that the probability of a word depends only on the previous few words. This assumption
is necessary for feasible estimation, but in fact incorrect for accurate computing. Empirical studies
show that performance of n-grams models improves with keeping around higher order n-grams
counts and doing smoothing (section 13.2).

Neural network based language models (NNLM) outperform standard n-gram language models.
In neural language models, words are projected into low-dimentional space, and similar words are
automatically clustered together. Also, smoothing is solved implicitly in the neural models.



13.3.1 Feedforward NNLM
Feedforward neural network based language model [BDVJ03] is similar to N-grams models in that
the history is also represented by a limited context of n previous words.

Figure 13.2 shows the neural architecture, which consists of a projection layer, a hidden layer and
an output layer. The objective is to estimate probabilities for word w; given the previous n words

wjfn+17 ceey wjfl

e Projection Layer: The projection layer maps each word from a word index to a dense vector
with a word feature matrix C' € RIVI*4 a shared parameter across all words, where each row
i is the word vector C(i) for word i.

e Hidden Layer: The hidden layer takes in all the input word vectors and performs linear and
non-linear transform: H = tanh(Uxz + b), where x = (C’(wj_n+1), vy C(wj_1)>.

e Qutput Layer: The output layer is a softmax layer that generates probability for each word in
the vocabulary that is the j-th word: P(w; = k|h;) = softmaz(vy,)

The objective is to look for the optimal parameter sets © that maximizes the log-likelihood:

1
L= T;f(wj,wj_l,...,wj_nﬂ;@) + R(O) (13.12)

where f is the mapping function that describe the model architecture, R(©) is a regularization term.
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Figure 13.2: Feedforward neural network based language model [BDVJ03, MKB*10]



13.3.2 Recurrent NNLM

Recurrent neural network based language model (RNNLM) [MKB™10] solves the problem of limited
word history. In recurrent networks, history is represented by neurons with recurrent connections.
Compared with feedforward NN that project single word into a dense vector, RNN learns to encode
whole history into a low dimensional space. So intuitively, RNNLM is better for handling long-term
dependencies in natual languages.

Figure 13.3 shows the architecture for RNNLM, which consists of an input layer x, a hidden (context)
layer s and an output layer y.

e Input Layer: The input vector x(t) is the concatenation of current input word vector w(t)
and the output from neurons in context layer from the last time stamp s(t — 1). Namely,

(1) = [w(t);s(t - 1)].

e (Context Layer: The context layer maps input vectors into a low dimensional space with
sigmoid activation function f(-):

s(t) = f<Wm(t)) - f(W [w(t);s(t— 1)D (13.13)

e Qutput Layer: The output layer use the same softmax function as in feedforward architecture
(section 13.3.1)

INPUT (t) QUTPUT (t)

) CONTEXT (t)

CONTEXT (t-1)

Figure 13.3: Recurrent neural network based language model [MKB™10]
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