
ECE598: Representation Learning: Algorithms and Models Fall 2017

Lecture 12: Generative Adversarial Networks (GANs)

Lecturer: Prof. Pramod Viswanath Scribe: Amir Taghvaei, Oct 26, 2016

12.1 Generative Adversarial Network

Generative Adversarial Network (GAN) is an example of generative models. A generative model, is
a model that is able to generate new samples from a hidden probability distribution. A classical
and relatively simple example of a generative model is mixture of Gaussians. This model contains
a parametric form of the hidden probability distribution, where the parameters are learned from
a given set of samples. The learned distribution is then used to generate new samples. GAN is
different from these probabilistic approaches as it does not contain the explicit form of the hidden
distribution. Instead it directly generates new samples. GAN behaves as a black-box that takes a
Gaussian random variable as input, and outputs new sample from the hidden distribution. The
black box is often represented by a Neural Network. In this sense, GANs and Variational Auto
Encoders are similar. Their main difference is in how they are trained. In fact, training is the most
interesting feature of GAN.

Mathematical formulation: Let X ∈ X be the random variable of interest, and let PX be its
probability distribution. The objective of a generative model is to generates new samples from PX ,

given training data {X1, . . . , XN}
i.i.d∼ PX .

GAN has the following architecture:

Generator Discriminator

synthetic

data

real

data

The two main components of GAN are:

• Generator: The generator is a neural network represented by a map gθ : Z → X where the
parameter θ represents the weights of the neural network. The map takes as input, a Gaussian
random variable Z ∼ N(0, I) (usually of dimensions lower than X) and outputs gθ(Z). The
distribution of gθ(Z) is denoted by Pθ. The goal of the generator is to choose θ such that the
output gθ(Z) has a distribution close to X.

• Discriminator: The discriminator is also a neural network, represented by a map Dw : X →
[0, 1] parametrized by weights w. The goal of the discriminator is to assign 1 to the samples
from the real distribution PX and 0 to the generated samples from Pθ.

1

The parameters of the GAN are (θ, w). They are obtained by solving the following min-max problem:

min
θ

max
w

E[log(Dw(X)) + log(1−Dw(gθ(Z)))] (12.1)

There are various (game theoretic) ways to motivate such a min-max formulation. However, I
find the following motivation the most satisfactory (and the only theoretical justification): If the
maximization over w is replaced with maximization over all functions D, then the min-max problem
reduces to

min
θ

JS(PX‖Pθ) (12.2)

where JS(PX‖Pθ) is the Jensen-Shannon divergence between PX and Pθ. The JS divergence for
any two probability distributions p and q is defined according to

JS(p‖q) = KL(p‖p+ q

2
) +KL(q‖p+ q

2
)

where KL is the Kullback-Leiber divergence. The JS divergence provides a measure of distance
between two probability distributions. Therefore the minimization over θ means, choosing the Pθ
that is closest to the target distribution PX in the JS divergence distance.

Training: Training is simply simultinous SGD (and its variants) on the minimization and max
imization problem, where w moves in the positive gradient direction and θ moves in the negative
gradient direction. In each iteration, one takes batch of samples from the target distribution
{X1, . . . , XN} ∼ PX and synthetic samples from the generator {gθ(Z1), . . . , gθ(ZN)} and updates
the parameters according to

w → w + η
N∑
i=1

∇w [log(Dw(Xi)) + log(1−Dw(gθ(Zi)))]

θ → θ − η
N∑
i=1

∇θ [log(1−Dw(gθ(Zi)))]

where η is the learning rate. It is not necessary to use the same learning rate, or the same number
of samples for θ and w. These are tuning parameters that are found empirically.

Mode collapse: Mode collapse refers to the situation where the generator maps several inputs to
the same output. For example the generator makes multiple images that contain the same color
or texture. A cartoon illustration of mode collapse is presented in Figure 12.1. It is observed that
the generator can not capture all modes of the target distribution, and it maps all data inputs to
a single mode. One reason for mode collapse is that the simultaneous SGD does not differentiate
between solving the min-max or max-min problem. If the minimization is performed first, i.e
minθ E[log(1 −Dw(gθ(Z)))], then the optimal generator would map all data points to where the
discriminator assigns high values (usually a single mode of the target distribution).

In order to circumvent this issue, one may want to perform the maximization to optimality before
updating the generator. However, it is observed that the optimal discriminator has vanishing
gradients on the support of the target and generator distributions (Thm. 2.2 in [AB17]). Vanishing
gradients does not allow for the generator to be trained efficiently.

2

Target

distribution

Generator

distribution

Figure 12.1: Cartoon illustration of the mode collapse phenomenon in GAN

12.2 Wasserstein GAN

Wasserstein GAN are introduced to address the mode collapse and other issues in the original
formulation of GAN. The main point of WGAN is to replace the JS distance to the L1-Wasserstein
distance metric. The intuition behind this choice is that (i) Wasserstein distance respects the
geometry of the underlying space, and (ii) it captures the distance of two probability measures
when their support do not intersect whereas KL divergence type distances can not capture that.
Not intersecting support is common in high dimensional applications where the target distribution
lies in a low dimensional manifold.

Topological properties of the Wasserstein distance: Consider the following distances and
divergences between two probability distributions PX and PY :

• The Total Variation (TV) distance

δ(PX , PY) := sup
A
|PX(A)− PY (A)|

• The Kullback-Leiber (KL) divergence

KL(PX‖PY) :=

∫
log(

pX(x)

pY (x)
)pX(x)dµ(x)

where pX and pY are densities of PX and PY with respect to the measure µ.

• The Jensen-Shannon (JS) divergence

JS(PX‖PY) := KL(PX‖Pm) +KL(PY ‖Pm)

where PM = PX+PY
2 .

• The L1-Wasserstein distance

W1(PX , PY) = inf
π

E[|X − Y |]

where π is any coupling between pair of random variables (X,Y) such that X ∼ PX and
Y ∼ PY .

3

Note that the TV distance is the same as the L0-Wasserstein distance due to Strassen’s Theorem

sup
A
|PX(A)− PY (A)| = inf

π
E[1X 6=Y] =: W0(PX , PY)

The topology induced by the distances can be compared by asking the following question: if a
sequence converges in a distance, does it converge in the other distance or not? For example it can
be shown that if {Pn} converges in KL distance, then {Pn} converges in JS distance. Therefore KL
induces a stronger topology compared to JS (it is easier for sequences to converge in KL). Here is a
complete comparison of the topologies induced by the distances (Thm. 2 in [ACB17]):

KL ⇒ (TV ⇔ JS) ⇒ (W1 ⇔ convergenc in dist.)

The following example illustrates the difference between these four distances in terms of continuity:

Example 12.1. Let Z ∼ Unif[0, 1] be the uniform distribution on the unit interval. Let P0 be
the probability distribution of (0, Z) ∈ R2. And let Pθ be the family of probability distributions
parametrized with θ corresponding to (θ, Z) ∈ R2. Then

δ(P0, Pθ) =

{
1 if θ 6= 0

0 if θ = 0

KL(P0, Pθ) =

{
∞ if θ 6= 0

0 if θ = 0

JS(P0, Pθ) =

{
2 log(2) if θ 6= 0

0 if θ = 0

W1(P0, Pθ) = |θ|

The example implies that the Wasserstein distance is the only distance among the four distances
which is continuous with respect to θ. In fact one can show that the continuity of the Wasserstein
distance with respect to the parameter θ is true in general (Thm. 1 in [ACB17]).

If gθ is continuous w.r.t θ, then W1(PX , Pgθ(Z)) is continuous w.r.t θ

Min-max formulation with Wasserstein distance: Motivated by nice topological properties
of Wasserstein distance, we replace the JS distance with the Wasserstein distance in (12.2).

min
θ
W1(PX , Pθ)

Then we use the Kantorovich-Rubinstein duality [Vil03, Thm. 1.14] to compute the Wasserstein
distance

W1(PX , Pθ) := sup
‖D‖L≤1

E[D(X)−D(gθ(Z))]

where the sup is over all functions with Lipschitz constant less than 1. Finally the sup over all
functions is replaced with parametrized family of functions Dw:

min
θ

max
w∈W

E[D(X)−D(gθ(Z))], s.t ‖Dw‖L ≤ K

4

where W is chosen such that the Lipschitz constant of Dw be smaller than a constant K. In practice
this is enforced by constraining the infinity norm of the weights (known as clipping).

No mode collapse: The Wasserstein formulation is empirically shown to avoid mode collapse.
The reason is that, in this formulation one can maximize the discriminator to optimality, before
updating the generator. In contrast to the JS formulation, the optimal discriminator does not
introduce vanishing gradients. This is illustrated in Figure 12.2 (The toy example illustrating this
concept is Fig. 2 in [ACB17]).

real

data

generated

data
GAN

WGAN

zero gradient

linear gradient

Figure 12.2: Cartoon illustration of how vanishing gradients is avoided in WGAN. The reason is
that the Lischitz constant of the discriminator is constrained to be less than one in WGAN.

Open question: The main open question regarding both formulations is the convergence. The
existing result regarding the convergence is that if the first maximization is performed optimally in
the function space corresponding to D, then the gradient descent on the space of the probability
distributions for Pθ would converge (since the distance is convex function of the probability
distribution) (Prop. 2 in [GPAM+14]).

Another open question, is theoretical understanding of mode collapse even in the simple and ideal
cases.

12.3 Other stuff

There are many existing empirical results regarding GANs. A good source is [Goo16] which also
includes all practical tricks one may use (e.g using the labels). Also [ACB17] contains the empirical
results for WGAN with the conclusion that WGAN are more robust with neural network architecture,
the Wasserstein metric is a better measure for quality of the generated images, and mode collapse
does not happen.

12.4 Appendix

Proof of equation (12.2): Express the expectation in integral form

E[log(D(X)) + log(1−D(X̂θ))] =

∫ [
log(D(x))pX(x) + log(1−D(x))pX̂θ(x)

]
dx

5

Therefore the maximization over D reduces to the maximization over D(x) for each fixed x. For
each fixed x, the integrand is (up to a constant) the KL divergence of two Bernouli random variables

with parameter pX(x)
PX(x)+PX̂θ

(x) and D(x). Therefore the optimal D(x) is equal to pX(x)
PX(x)+PX̂θ

(x) . And

the resulting expectation is∫ [
log(

pX(x)

PX(x) + PX̂θ(x)
)pX(x) + log(

PX̂θ(x)

PX(x) + PX̂θ(x)
)pX̂θ(x)

]
dx

= KL

(
PX‖

PX + PX̂θ
2

)
− log(2) +KL

(
PX̂θ‖

PX + PX̂θ
2

)
− log(2)

= JS(PX‖PX̂θ)− 2 log(2)

6

Bibliography

[AB17] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[Goo16] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[Vil03] Cédric Villani. Topics in optimal transportation. Number 58. American Mathematical
Soc., 2003.

7

	12.1 Generative Adversarial Network
	12.2 Wasserstein GAN
	12.3 Other stuff
	12.4 Appendix

