
ECE598: Representation Learning Fall 2017

Lecture 4: Isomap, SNE, t-SNE

Lecturer: Pramod Viswanath Scribe: Bryan Clifford and Pranav Rao, Sept. 21, 2017

4.1 Problem Setup

The goal of this topic is the same as the previous lectures. We want to reduce the dimensionality of
our data while preserving the inherent structure of the data.

• We’re given a data set consisting of N samples

{xn}Nn=1 ⊂ Rdx .

• We want to reduce the dimensionality of the data but preserve the structure of the data. In
this case we mean that we want to preserve relative distances (“similarities”) between different
xs and their lower dimensional representations (ys). Specifically, for a given pair of high
dimensional (HD) data elements xi and xj and their low-dimensional (LD) counterparts yi
and yj (both in Rdy) then we want to have

‖xi − xj‖X ≈ ‖yi − yj‖Y

where ‖ · ‖X and ‖ · ‖Y are the measures of distance (or similarity) in the HD data space X
and the LD (“induced”) space Y respectively.

One way to do this, called the Sammon mapping [Sam69], is to solve the following optimization
problem

min
{ŷk}Nk=1

1∑
i≤j ‖xi − xj‖

∑
i≤j

(‖xi − xj‖ − ‖yi − yj‖)2

‖xi − xj‖
, (4.1)

which can be done using a gradient descent method. Here (and in the rest of these notes we leave
out the subscripts on the ‖ · ‖ operators as they can be determined from context. The denominator
in Eq. (4.1) is particularly important since it prevents the summation from being dominated by
outliers (data points for which ‖xi − xj‖ is large for all j).

Unfortunately, many of the classical methods for dimensionality reduction like PCA or Multidi-
mensional Scaling (MDS) [Gow15] which use a Euclidean distance between the data points fail to
preserve the non-linear structure of the data. For example, the Euclidean distance between two
points on the surface of a sphere may be small but the distance along the sphere between the points
may be much larger. For to points on the poles of the Earth the Euclidean distance is the diameter
of the Earth dE , but the surface distance is half the circumference 1

2πdE .

We will look at three methods that do preserve non-linear or neighborhood structures of the
data called Isomap [TdSL00], Stochastic Neighbor Embedding (SNE) [BF85], and t-SNE
[vdMH08] which are described in the following sections. But first, we will take a closer look at the
classical technique, MDS, in order to better set the stage for our descriptions of the more modern
techniques.
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4.2 MDS

MDS is a classical technique of dimensionality reduction that can account for both Euclidean and
non-Euclidean distances. Most generally, the input to MDS is ’dissimilarity’ between data points
dij = ‖xi − xj‖, and not the data itself, so we assume we only have access to the matrix D = [dij ].
The goal of reducing dimensionality while preserving data structure thus leads to an objective or
stress function that looks like [FHT01]:

Sstress =
∑
i 6=j

(dij − ‖yi − yj‖)2 (4.2)

The above would have quite large contributions from outliers with dii′ large, and thus would weight
those outliers considerably more than other data points, so the so-called Sammon mapping is to
normalize, e.g.

Ssam =
∑
i 6=j

(dij − ‖yi − yj‖)2

dij
(4.3)

and minimize the above function with respect to the lower dimensional representation, using gradient
descent or something similar. If, however, one was to use classical scaling, we would minimize the
following strain function:

Sstrain =
∑
i 6=j

(sij − 〈yi − ȳ,yj − ȳ〉)2 (4.4)

Above, sij = 〈xi − x̄,xj − x̄〉 is referred to as a similarity. The similarity matrix is then S = XcX
T
c

if the matrix X stores the data (x1, ...,xN ) and Xc represents the centered version of X. The cost
function above is readily minimized by PCA (if the distances are Euclidean, which we will assume
henceforth), but in MDS, we are given dissimilarity data, not the data itself. We can relate the
similarities in (4.4) to dissimilarities dij by noting that:

d2ij = ‖xi − xj‖2 = ‖xi − x̄‖2 + ‖xj − x̄‖2 − 2 〈xi − x̄,xj − x̄〉 (4.5)

By completing the square. If we wanted to solve for the last term, which is sij , we’d first perform a
double centering on the matrix D2 (element-wise squaring, not a matrix square) with the matrix
H =

(
I− 1

N 1N
)

where 1N is an N ×N matrix of ones. Also, we would need to multiply by −1
2 ,

yielding:

S = −HD2

2
H (4.6)

As the S matrix is in the form XcX
T
c which is the Gram matrix one diagonalizes in PCA, we can

now take S→ US′ (if we define the SVD as Xc = US′VT ). Classical scaling is, thus, equivalent to
PCA (if the norms used are all Euclidean) – we just receive a different input – dissimilarity instead
of similarity – which can be related via double-centering.
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4.3 Isomap

Classical methods such as PCA or MDS don’t preserve the non-linear structure of the data. Hence
Isomap was developed as a means of computing an embedding that preserves the local structure
of the data. It is very similar to MDS; however, it assumes that the data lie on some sort of
LD non-linear manifold that is embedded in the HD space X , and computes the distances (or
dissimilarities) between points with geodesic1 distances of the manifold. The key assumption is that
the geodesic distances on the manifold can be computed using neighborhood graphs. With these
distances computed Isomap then solves the typical MDS problem using the PCA-based method
described in the previous section. Specifically Isomap solves

min
{ŷk}Nk=1

∑
i≤j

(
dGij − ‖yi − yj‖

)2
. (4.7)

where dGij is the graph-based estimate of the geodesic distance between xi and xj . The major

difficulty of the method lies in computing the dGij from the data. Once these values are known the
ys can be estimated very efficiently by rewriting Eq. (4.7) as

min
{ŷk}Nk=1

‖τ(DG)− τ(Dy)‖F (4.8)

where {DG}i,j = dGij , {Dy}i,j = ‖yi − yj‖ and ‖ · ‖Y is the Euclidean distance. The operator τ(·) is
called the “centering” operator and is defined as

τ(D) = −1

2
HD2H (4.9)

with {D2}i,j = {D}2i,j .

As shown in the previous section, the solution to Eq. (4.8) is to compute the eigenpairs of τ(DG).
Denoting the pth eigenvalue and vector as λp and vp respectively, then the pth coordinate of yi is
given by

yi,p =
√
λpvp,i. (4.10)

Computing dGij consists of two steps: (a) form the graph from the data, and (b) find the shortest
path between each pair of points on the graph. To compute the graph we first compute the distances
between all the data points dXij = ‖xi − xj‖. Then for each point we compute its neighbors. Either

we choose the K nearest neighbors or we choose {xj |dXij ≤ ε}. The graph then has a node for each
point with links between the point’s neighbors that have edge lengths given by the distance between
the points. Since small local regions of Euclidean manifolds can be approximated as planes (linear
approximation), if the neighborhood size ε is made small enough, then the geodesic distance between
neighbors can be approximated with dGij . Then we can find dGij between two unconnected points on
the graph by finding the shortest path between them.

Finding the shortest path between two points can be done using Floyd’s algorithm or other efficient
path finding algorithms such as Dijkstras Algorithm (which works for non-symmetric graphs too2).
Floyd’s algorithm is as follows.

1A geodesic is the shortest possible path between two points on a curved surface
2This is particularly useful when the graph is determined by selecting a fixed number of nearest neighbors, since

this can lead to asymmetric graphs if not handled carefully
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Figure 4.1: Simulation results for order an Isomap example where the data are distributed in a
3D swiss roll. The left plot shows the original measured 3D data and the right plot shows the 2D
induced (transformed) data. It is obvious that the mapping has preserved the local structure of the
data and “unfolded” the swiss roll.

1. Initialize the dGij for neighbors with their associated edge weights and set the values of dGij for
non-neighbors to infinity.

2. For k = 1, 2, . . . , N set dGij = min{dGij , dGik + dGkj}.

As mentioned in the beginning of this section, Isomap hinges on the ability to approximate geodesic
or manifold distance dMij by the graph distance dGij , which are based on small Euclidean point-to-point
distances. The authors of Isomap provide a proof illustrating the bounds of this approximation.
A sketch of their proof follows: it can be shown that geodesic distances from point i to point
j can be approximated by geodesics of points connecting i and j, and these geodesics can be
approximated to dGij using geometric considerations, and finally they present an inequality showing

dMij ≈ dGij [TdSL00],

1− λ1 ≤
dGij

dMij
≤ 1 + λ2 (4.11)

Above, λ1, λ2 are arbitrarily small parameters, and given another small parameter µ, they can
guarantee with probability 1− µ that all points i, j can satisfy the above inequality (the parameters
are coupled to quantities in the algorithm like k the number of nearest neighbors, and each other,
though µ looks arbitrary above).

One drawback to the given Isomap algorithm is that for noisy data, shortcuts between nodes can be
found. If the data are very noisy, a random-walk or diffusion based distance measurement can be
found so that an average path length is computed instead. The t-SNE paper uses a method like this
when computing the induced vectors from only a subset of the original data [vdMH08].

The code in section 4.6 shows an example of performing Isomap on a set of points with a non-linear
structure. The points are originally distributed along a 3D swiss-roll, but after the transformation
they are unfolded onto a rectangle as shown in Fig. 4.1.
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4.4 SNE

Stochastic neighbor embedding takes a probabilistic approach at modeling neighborhoods instead of
a deterministic approach like Isomap. One of the drawbacks of Isomap is that it doesn’t work well
for situations where the same object belongs to several disparate locations. For example if data are
arranged in a circle, the points at the “cut” of the circle could belong to both ends of the reduced
dimensional space (a line).

Like Isomap SNE doesn’t specify that the distances in the data space need to be Euclidean, but unlike
Isomap, SNE models the probabilities that two points are neighbors. Specifically the probability
that point xj is a neighbor of the point xi is given as

pj|i =
exp(−dXij )∑
k 6=i exp(−dXik)

(4.12)

and pj|i := 0. The distance measure suggested by SNE is

dij =
‖xi − xj‖2

2σ2i
(4.13)

so that the prior probability will decay as a Gaussian placed over the point, thus preserving neighbor
relationships (the local data structure). The σi parameter is a way of specifying the neighborhood
sizes of points (similar to ε in Isomap).

To find the induced coordinates, SNE tries to pick yi such that the induced neighborhood priors

qj|i =
exp(−‖yi − yj‖/2)∑
k 6=i exp(−‖yi − yk‖/2)

(4.14)

are as pj|i even though the dimension as been reduced.3 To do this SNE solves the following
optimization problem

min
{ŷk}Nk=1

∑
i,j

pj|i log
pj|i

qj|i
. (4.15)

The objective function KL({yn}Nn=1 is the Kullback-Leibler divergence. It is asymmetric, and
assigns a larger cost to model points that are close in X (large pj|i) as far apart in Y (small qj|i)
than it does to points that are far apart in X (small pj|i) but modeled as close in Y (qj|i). This is a
beneficial feature as it leads to better clustering.

The objective function is solved using a gradient descent approach with annealing and momentum.4

Specifically

y
(k)
i = y

(k−1)
i − α∂KL

∂yi
+ β(y

(k−1)
i − y(k−2)i ) + η(θ(k))) (4.16)

where α is the gradient step size, and β is the momentum parameter and η is additive iid noise
with parameters that decrease its variance with each iteration. Adding momentum and noise help
the descent avoid shallow local minima.

3The fact that there is no sigma parameter here is in order to make the induced space more regular.
4Annealing in this case means that noise is added to the gradient step, but with the noise variance gradually

decreasing with each iteration.

5



The gradient is given by

∂KL

∂yi
= −2

∑
j

[(pj|i − qj|i)− (pi|j − qi|j)](yj − yi) (4.17)

and has a very useful interpretation as a force of attraction to other points in the embedded space.
The force acts as if there are springs attached to yi from all of the other points. The direction of
the force is in the direction of the other points and the force is proportional to the distance and the
relative difference between priors.

The problem can also be generalized to allow one-to-many mappings (which was a situation where
Isomap would fail), which allows SNE to do things like disambiguate homonyms. To do this, the
induced prior can be modeled as a weighted sum of priors (mixture of priors) as

qj|i =
∑
b

πib
∑
c

πjc
exp(−‖yib − yjc‖/2)∑

kd πkd exp(−‖yib − ykd‖/2)
. (4.18)

where the weights πib are the mixing probabilities for the bth induced location of point xi. The
meaning is that each of point yi’s mixtures is the sum of the mixtures of the other points.

Lastly, an interesting fact about SNE is that as σi gets very large, the optimization becomes almost
equivalent to the Sammon mapping. [BF85].

4.5 t-SNE

There are two major problems with SNE

1. The cost function is hard to optimize

2. The crowding problem. In order to maintain average distances in a LD space from a HD
space, points that are equidistant in the HD space get crowed together in the LD space. For
example in 2D there can be 3 points equidistant from each other (vertices’s of an equilateral
triangle) but in 1D only 2 points can be equidistant to each other so the solution is to crowd
all of the points together. A similar situation occurs for points on a sphere since the surface
area of the sphere is much large than the surface area of a circle (Fig. 4.2).

t-SNE was designed to solve both of these problems. To make the cost function easier to optimize,
symmetric definitions of the neighborhood probabilities are used, and to solve the crowding problem,
t-SNE uses a heavier tailed distribution (Student t-distribution with 1 degree of freedom) in the
induced space.

More precisely, in t-SNE replaces the prior distributions pj|i and qj|i with joint distributions pij and
qij .

pij =
pj|i + pi|j

2N

qij =
(1− ‖yi − yj‖/2)−1∑
k 6=l(1− ‖yk − yl‖2)−1

(4.19)
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Figure 4.2: Simulation results for order an Isomap example where the data are evenly distributed
in a the surface of a sphere. The left plot shows the original measured 3D data and the right plot
shows the 2D induced (transformed) data. The color of the data is proportional to the x1 coordinate.
In the reduced dimensionality some of the points get crowed towards the edges of the 2D area.

These are joint distributions in the sense that they both add up to 1 when summed over all i and j,
while the prior distributions in SNE summed up to 1 when summed over j. The cost function is the
same but with the priors replaced with the joint probabilities.

The definition of pij is left asymmetric from that of qij so as to make it less sensitive to outliers (if
written as qij the a large outlier xi could make the pij small for all j which would mean that the
other points have little effect on the cost associated with xi) and therefore easier to optimize. It
also makes the gradient a little simpler. The different distribution in qij has heavier tails than a
Gaussian which makes the effect of far away points larger than when the Gaussian distribution was
used. This in turn means that distances can be larger in the induced space than they would be for
SNE, which helps to avoid the crowding problem.

The gradient of the cost function becomes

∂KL

∂yi
= −4

∑
j

(pij − qij)
yj − yi

1 + ‖yi − yj‖2
. (4.20)

Making the same connected spring system comparison as for Eq. (4.17) we see that the use of the
Student t-distribution with 1 degree of freedom has led to a normalization term, which makes the
magnitude of the force felt by disparate ys proportional only to the difference in probabilities an
not to their actual distance. This property leads to much better clustering and avoids the crowding
problem (since only probability matters, not Euclidean distance).

4.6 Isomap Example Code

%% −−−− Perform Isomap on random example −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
N = 800 ; % number o f samples
K = 6 ;
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sigma = 0 . 0 1 ;

% genera te data
z = 1.5∗ rand (N, 1 ) ;
x1 = z .∗ sin (2∗pi∗z ) + sigma∗randn(N, 1 ) ;
x2 = rand (N, 1 ) ;
x3 = z .∗ cos (2∗pi∗z ) + sigma∗randn(N, 1 ) ;
x = [ x1 , x2 , x3 ] ;

%% compute d i s t a n c e s between the p o i n t s
Dx = zeros (N,N) ;
for n = 1 :N

for m = n+1:N
Dx(n ,m) = norm( x (n , : ) − x (m, : ) ) ;
Dx(m, n) = Dx(n ,m) ;

end
end

%% compute graph
G = zeros (N,N) ;
for n = 1 :N

[ ˜ , inds ] = sort (Dx(n , : ) , ’ ascend ’ ) ;
inds = inds ( 2 :K+1); % s m a l l e s t d i s t a n c e i s the d iag element ( the same p o i n t )
for m = inds % f o r c e symmetry

G(n ,m) = Dx(n ,m) ;
G(m, n) = G(n ,m) ;

end
end

%% e s t i m a t e g e o d e s i c d i s t a n c e s
Dg = G;
Dg(Dg == 0) = i n f ;
Dg( 1 :N+1:end) = 0 ;
for k = 1 :N

for n = 1 :N
for m = 1 :N

d = Dg(n , k ) + Dg(k ,m) ;
i f d < Dg(n ,m)

Dg(n ,m) = d ;
end

end
end

end

%% c e n t e r d i s t a n c e s
Dg c = Dg . ˆ 2 ;
Dg c = Dg c − repmat (mean( Dg c , 1 ) ,N, 1 ) ;
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Dg c = Dg c − repmat (mean( Dg c , 2 ) , 1 ,N) ;
Dg c = −Dg c . / 2 ;

%% compute e igen v a l u e s
[ v , lambda ] = eig ( Dg c ) ;
v = v ( : , 1 : 2 ) ;
lambda = lambda ( 1 : 2 , 1 : 2 ) ;

%% compute new c o o r d i n a t e s
y = v∗sqrt ( lambda ) ;

%% d i s p l a y r e s u l t s
f igure ;
% −−−− measured −−−−
subplot ( 1 , 2 , 1 ) ;
s c a t t e r 3 ( x ( : , 1 ) , x ( : , 2 ) , x ( : , 3 ) , 1 2 8 , z ( : , 1 ) , ’ f i l l e d ’ ) ;
t i t l e ( ’ Measured data ’ ) ;
xlabel ( ’ x 1 ’ ) ;
ylabel ( ’ x 2 ’ ) ;
zlabel ( ’ x 3 ’ ) ;
% −−−− induced −−−−
subplot ( 1 , 2 , 2 ) ;
s c a t t e r ( y ( : , 1 ) , y ( : , 2 ) , 1 2 8 , z ( : , 1 ) , ’ f i l l e d ’ ) ;
t i t l e ( ’ Induced data ’ ) ;
xlabel ( ’ y 1 ’ ) ;
ylabel ( ’ y 2 ’ ) ;
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