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3.1 Problem Setup

The setup is the same as that of CCA.

• We’re given 2 data sets each consisting of N samples

{xn}Nn=1 and {yn}Nn=1.

• The data are two totally different measurement modalities of the same hidden (latent) variable.
For example, xn could be a video (vectorized) of a person saying a word and yn could be the
audio from the video, and the latent variable is the word the person is saying. Hence xn and
yn live in different dimensional spaces:

xn ∈ Rdx , yn ∈ Rdy ∀n.

• We will organize the data into row matrices

X = (x1, . . . ,xN )T ∈ RN×dx

Y = (y1, . . . ,yN )T ∈ RN×dy
(3.1)

3.1.1 Goal:

Our goal is to find two transforms for xn and yn that we can use to reduce the dimensionality of
each data set to the dimension that we think the latent variable is. However, because both data sets
are generated from the same latent variable, we want the transforms to be such that the transformed
xs and ys are maximally covariant. Furthermore we want the transformed xs to be uncorrelated
from themselves (and the same for the transformed ys).

This is almost the same goal as for CCA, however in CCA we restricted ourselves to only linear
transforms of our variables. In this case we want to remove this restriction. This approach is called
Nonlinear Canonical Component/Correlation Analysis (CCA).

More formally we want to find two sets of functions {fm}dzm=1 such that fm : Rdx → R and {gm}dzm=1

such that g : Rdy → R which solve the problem

max
{fm}dzm=1

{gm}dzm=1

E [fm(x)gm(y)]√
Var [fm(x)] Var [gm(y)]

s.t. E [fm(x)fk(x)] = E [gm(y)gk(y)] = 0 if m 6= k.

(3.2)
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Note, this is no longer the Pearson correlation. Instead this is called the maximum correlation
or also the Hirschfeld-Gebelein-Renyi maximal correlation and it is always greater than or
equal to the Pearson-correlation since

max
f,g

E [f(x)g(y)]√
Var [f(x)] Var [g(y)]

≥ max
α,β

E
[
(xTα)(yTβ)

]√
Var [xTα] Var [xTα]

(3.3)

owing to the fact that (xTα,yTβ) is a special case of (f(x), g(y)).

The maximum correlation ρ has many important properties. For scalars (i.e. dx = dy = 1) these
properties are

1. ρ : PXY → [0, 1], where PXY is the joint probability distribution of the random variables x
and y.

2. ρ = 0 if and only if x and y are independent.

3. ρ = 1 if and only if there exist either or both smooth functions h1 and h2 such that x = h1(y)
and y = h2(x).

4. ρ(x, y) = ρ(y, x)

5. If x and y are jointly Gaussian then ρ(x, y) = ρPearson(x, y).

It is interesting to note that these properties are also used to define the maximum correlation. Most
of the work goes in to showing the “only if”s and property 5.

3.2 Solution

This section shows a method for solving (3.2). It is very similar to CCA in that it involves a change
of variables and the SVD; however as will be seen the solution in this section is not very practical
for high-dimensional data (and hence in general, since part of the goal is to be able to reduce
dimensionality of high-dimensional data).

We begin by further restricting ourselves to only centered functions with unit variance. This can be
done without loss of generality since any uncentered function funcentered can be centered by defining
a new function fcentered = funcentered − E [funcentered]. Likewise, the variance can be set to one by
dividing by the standard deviation. Our new optimization problem is thus

max
{fm}dzm=1

{gm}dzm=1

E [fm(x)gm(y)]

s.t. E [fm(x)fk(x)] = E [gm(y)gk(y)] = δm,k

E [fm(x)] = E [gm(y)] = 0.

(3.4)

It is instructive to consider the case when x and y can only take on a finite number of values. This
case was first proven in using a “geometric and operator theoretic interpretation” in [Wit75]. In
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this case, denoting the probability mass function of the joint distribution as px,y, we have

E [fm(x)gm(y)] =
∑
x,y

px,yfm(x)gm(y)

=
∑
x

fm(x)
∑
y

px,ygm(y)

= fTmPgm,

(3.5)

where fTm, gm are the vectors of values of fm(x) and gm(y), respectively and P is the matrix of
probability mass values. We also have

E [fm(x)] = E [fm(x)1]

= fTmP1,
(3.6)

and
E [gm(y)] = E [1gm(x)]

= 1TPgm,
(3.7)

where 1 is a vector with 1 for every element, so that Eq. (3.4) becomes

max
{fm}dzm=1

{gm}dzm=1

fTmPgm

s.t. fTmP1 = 1TPgm = 0

fTmPxfk = gTmPygk = δm,k.

(3.8)

where Px = diag {px}, Py = diag {py}, and px = P1 and py = PT1 are the marginal mass function
vectors.

To simplify the constrains a bit we define

f̃ = P1/2
x f

g̃ = P1/2
y g.

(3.9)

which gives us
max
{f̃m}dzm=1

{g̃m}dzm=1

f̃TmP
−1/2
x PP−1/2y g̃m

s.t. f̃Tmp
1/2
x = g̃Tmp

1/2
y = 0

f̃Tmf̃k = g̃Tmg̃m = δm,k.

(3.10)

where we have made use of the fact that P
−1/2
x P1 = P

−1/2
x px = p

1/2
x (the vector of square-roots of

marginal mass function values). Similarly, 1TPP
−1/2
y = (P

−1/2
y py)

T = (p
1/2
y )T .

Like with CCA we are very close to the SVD problem. The only difference seems to be the extra
constraint

f̃Tmp
1/2
x = g̃Tmp

1/2
y = 0 (3.11)

which says that fm and gm must be orthogonal to the vectors p
1/2
x and p

1/2
y respectively. However,

this is actually not a problem.
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Note that if we let f̃m = p
1/2
x and g̃m = p

1/2
y then the objective function equals 1 which is the

maximum it can be! Hence from this observation we see that the first left and right singular
vectors of the matrix

Q := P−1/2x PP−1/2y (3.12)

are in fact f̃1 = p
1/2
x and g̃1 = p

1/2
y respectively and the corresponding singular value is σ1 = 1.

Thus we see that we are really trying to compute the SVD of Q, but we want to ignore the first
singular vectors and focus on the remaining set. Thus the maximum correlation is given by
the second singular value of Q and the corresponding left and right singular vectors
are the optimal values of f and g.

It is worth noting that this can be generalized using tensor products to independent pairs of random
variables ((x1,y1), (x2,y2)) coming from independent distributions px1,y1 and px2,y2 . Again, this
was first shown in [Wit75].

3.2.1 Generalization to continuous variables

The above solution easily generalizes to the case of continuous variables, albeit with a slight caveat.
Following the same argument, we see that with continuous variables Eq. (3.5) becomes

E [fm(x)gm(y)] =

∫ ∫
pxy(x,y)fm(x)gm(y)dxdy. (3.13)

Now, if we restrict fm and gm to be members of a finite dimensional Hilbert space (see [NS82] or
ECE 513 notes) then we can write them as a linear combinations of a set of basis functions

fm(x) =

Lx∑
i=1

fm,iφi(x)

gm(y) =

Ly∑
i=1

gm,iψi(x)

(3.14)

An example of this could be the polynomial basis but with a domain restriction on x and y (i.e.
they both have finite support) in which case the basis functions could be given by (for dx = dy = 1)

φi(x) = xi−1, ψi(y) = yi−1. (3.15)

With the Hilbert space restriction Eq. (3.13) becomes

E [fm(x)gm(y)] =

Lx∑
i=1

Ly∑
j=1

fm,igm,j

∫ ∫
pxy(x,y)φi(x)ψj(y)dxdy

= fTmPgm,

(3.16)

where now we have

Pi,j =

∫ ∫
pxy(x,y)φi(x)ψj(y)dxdy. (3.17)

Note that the only difference is in the meaning our matrix and vector elements which are now the
basis coefficients and basis cross-correlation values.
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Continuing along the same steps and without much loss of generality (just restricting the set of
Hilbert spaces we can have) assuming that φ1(x) = ψ1(y) = 1 we have

E [fm(x)] = E [fm(x)1]

= fTmPe1

= fTmφ̄,

(3.18)

and
E [gm(y)] = E [1gm(x)]

= eT1 Pgm

= ψ̄gm

(3.19)

where e1 is the standard basis vector with all zero elements except for the first one which is 1,
φ̄ = Pe1, ψ̄ = PTe1 are the vectors of expected values of the basis functions. Now replacing P
with Σφ,ψ 1 with e1 and px and py with φ̄x and ψ̄y respectively, in the equations for the discrete
case, the results are the same.

Instead of requiring that φ1(x) = ψ1(y) = 1 we could also require that our basis functions be
defined such that φ̄ = 0 and similarly for ψ̄. With this setup, the zero-mean constraint vanishes,
and the maximum correlation becomes the first singular value (with respective f and g given by
the singular vectors). In this case the N-CCA problem is solved by replacing Px and Py with the
cross-correlation functions of the original basis functions, i.e.

{Px}i,j =

∫
px(x)φi(x)φj(x)dx (3.20)

and respectively for Py.

3.2.2 Computational challenges

While the above SVD solutions to non-linear CCA can be rather practical when either the number
of discrete values of x and y or the dimension of the spaces of fm and gm (Lx and Ly respectively)
are small. In these cases the SVD can be computed efficiently and, more importantly, it is feasible
to estimate the probability mass function or basis cross-correlation values (P) from the data (via
the sample estimates). Unfortunately these method’s don’t scale well with the size of the problem.
The number of terms in P scales quadratically with the size of the the spaces. Hence when x and
y take on many values or Lx and Ly are large, vast amounts of training data would be needed
to obtain reasonable estimates of P. There are two methods to do this in practice Kernel-CCA
(K-CCA) [BJ02] and the more prominent method, the Alternating Conditional Expectation (ACE)
algorithm [BF85] which are detailed in the following sections.

3.3 K-CCA

K-CCA was proposed in [BJ02] as a biproduct of the development of a form of independent
component analysis that used the maximum correlation as its contrast function. This method is
very similar to the continuous case discussed above. The difference is the type of Hilbert space used.
In K-CCA the Hilbert space is required to have a very special structure (called a Reproducing
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Kernel Hilbert Space) (RKHS). Specifically a RKHS is a Hilbert space of functions defined by a
Mercer kernel function K(x1,x2) which is defined such that the “Gram matrix” K with elements

Ki,j = K(xi,xj) (3.21)

is semi-positive definite for any set of xs, i.e. for K defined from K(x1,x2) and {xn}Nn=1

αTKα ≥ 0 ∀α 6= 0 ∈ RN (3.22)

and such that any function f(x) in the RKHS can be written as

f(x) =
N∑
n=1

fnK(x,xn). (3.23)

and with an inner product between elements (functions) in the space defined as

〈f1(x), f2(x)〉 :=
∑
i,j

f1,if2,jK(xi,xj). (3.24)

It should be noted that this definition of the RKHS is based on the Moor-Aronszajn theorem. In our
previous notation we would say that the set of basis functions {φl(x)} is given by {K(x,xn)}Nn=1,
and Lx is given by N .

Given the above definition every function f in an RKHS has the reproducing property which is

f(x′) = 〈K(x,x′), f(x)〉. (3.25)

This property leads to an important interpretation of K which is as a “feature map”, i.e. a map from
the x space to a function. Denoting the function defined by a particular x′ as Φx′(x) = K(x,x′)
we have

〈Φx′(x),Φx′′(x)〉 = K(x′,x′′) (3.26)

In K-CCA the RKHS for f and g are the ones defined by the sets of samples {xn}Nn=1 and {yn}Nn=1.
Let the feature maps for the spaces be denoted as Φx′(x) and Ψy′(y), and the corresponding kernels
by Kx and Ky, respectively. Given these definitions we can see that Eq. (3.27) becomes

Pi,j =

∫ ∫
pxy(x,y)Φxi(x)Ψyj (y)dxdy

=

∫ ∫
pxy(x,y)Kx(x,xi)Ky(y,yi)dxdy.

(3.27)

In K-CCA we then replace the integral by the sample expectation so that

Pi,j =
1

N

N∑
n=1

Kx(xn,xi)Ky(yn,yi) (3.28)

and hence

P =
1

N
KxKy. (3.29)
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By further restricting the kernels such that

N∑
n=1

Φxn(x) = 0 (3.30)

and respectively for {Ψyn}Nn=1 then when we replace the population expectations with sample
expectations we have the same problem as discussed in the previous section.

Equation (3.29) is particularly important since it shows that P will be written as the product of
two semi-positive definite matrices (and similarly for the Px and Py). This fact enables the K-CCA
algorithm to be computed efficiently using incomplete Cholesky decompositions, which leads to
linear scaling with the number of data points [BJ02].

3.4 ACE

The ACE algorithm is a very widely used algorithm that enables the maximum correlation and
respective mappings f and g to be found through a simple alternating procedure which under certain
conditions is proven to converge globally [BF85].

The method can be derived as follows. First note that

E
[
(f(x)− g(y))2

]
= E

[
f2(x)

]
+ E

[
g2(y)

]
− 2 E [f(x)g(y)] . (3.31)

Thus if we include the mean-zero and unit variance constraints on f and g we have

E
[
(f(x)− g(y))2

]
= 2 (1− E [f(x)g(y)]) . (3.32)

we will be able to solve the N-CCA problem (for the first pair of functions) with the solution to

min
f,g

E
[
(f(x)− g(y))2

]
s.t. E [f(x)] = E [g(y)] = 0

E
[
f2(x)

]
= E

[
g2(y)

]
= 1.

(3.33)

The ACE algorithm does this alternatively by iterating between the follow problems

1.
fk(x) = arg min

f
E
[
(f(x)− gk−1(y))2

]
s.t. E

[
f2(x)

]
= 1

=
E
[
gk−1(y)

∣∣ x]√
Var

[
E
[
gk−1(y)

∣∣ x]]
(3.34)

2.
gk(y) = arg min

g
E
[
(fk(x)− g(y))2

]
s.t. E

[
g2(y)

]
= 1

=
E
[
fk(x)

∣∣ y]√
Var

[
E
[
fk(x)

∣∣ y]] (3.35)
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where k is the iteration number. The solutions to the above optimization problems are proven as
follows. In practice, dividing by the variance in the first problem can be neglected. The algorithm
can be shown to converge to an optimal solution [BF85].

Following [BF85], it can be shown that the space of functions of random variables with the inner
product between f1(x) and f2(x) given by E [f1(x)f2(x)] and the induced norm is a Hilbert space
and that the conditional expectation operator is the projection operator from the space of functions
of random variables x to the space of functions of random variables y and hence

f∗(x) = arg min
f

E
[
(f(x)− g(y))2

]
= E

[
g(y)

∣∣ x] . (3.36)

This can also be shown via the orthogonality principle.

Then since we have E [g(y)] = 0 by definition and by the tower property E
[
E
[
g(y)

∣∣ x]] = E [g(y)].
Hence we automatically satisfy the mean-zero constraint on f∗(x).

Now the set of functions of y with unit variance is a subset of the functions of y. By the tower
property if we project a projection onto a subset of the first projections space its the same as
projecting onto the subset. It can be shown that the projection of a vector f in a Hilbert space
onto the unit ball (subset of unit norm vectors) is given by dividing the vector by max{1, ‖f‖}.
Hence the solution to the optimization problem with the norm constraint is given by the conditional
expectation divided by it’s variance.

In practice, the ACE algorithm is applied to data samples and the population expectations are
substituted for their sample equivalents. However, computing the conditional expectations from
the data can be difficult. Consider the case of continuous variables, in which every value may be
unique. Hence in the case of continuous variables the conditional expectation is often replaced
with a data smooth which could be a regression of the data or a normalized histogram of bin
frequencies [BF85]. An essential property of the smoother is its having a zero-mean (which can be
done by subtracting the mean of the uncentered version).

One of the main problems with the ACE algorithm is that the performance often depends strongly
on the choice of data smoother.

3.5 Example

It is instructive to consider a simple 1D example in which x and y are generated from a latent
variable z ∼ N (0, 1) with additive noise for εx ∼ N (0, σ) and εy ∼ N (0, σ) as

x =wxe
−z + µx + εx

y =wye
−z.2 + µy + εy

(3.37)

Let us use as a smoother polynomial regression, i.e.

E
[
g(y)

∣∣ x] ≈ M∑
m=0

af,mx
m

E
[
f(x)

∣∣ y] ≈ M∑
m=0

ag,my
m

(3.38)
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where the least-squares regression solutions are given by

âf =
(
XTX

)−1
XTg (3.39)

where X = (1,x, . . . ,xm), and âf is the vector of estimated coefficients of f(x), x is the vector of x
samples, and g is the vector of g(y) values. The solution is similar for ag and bg.

We initialize the coefficients to f(x) = (x− E [(]x))/Var [(]x) and similarly for g(y) which is the
optimal linear estimator. Then we estimate the coefficients of each estimator and normalize and
center them repeatedly as per the ACE algorithm. The following MATLAB code simulates this for
M = 8 and Fig. 3.1 shows the convergence of the estimated maximum correlation as well as the
transformed variables. Note that since both x and y are generated from the same latent variable
and an inverse transform exists to map x to z, the maximum correlation should be 1. We won’t
actually see this because our choice of data smoother precludes this inverse transform from the set
of transforms we are projecting onto.
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Figure 3.1: Simulation results for order 8 polynomial regression: The top left shows the original
measured data and the top right shows the transformed data with the estimated optimal f(x) and
g(y). The maximum correlation is shown on the bottom and converges very quickly.

%% −−−− Perform ACE on random 1d example −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
N = 200 ; % number o f samples
s igma x = . 5 ;
s igma y = . 1 ;

% genera te random parameters and l a t e n t v a r i a b l e samples
z = randn(N, 1 ) ;

% genera te data
x = 3∗exp(−z ) + 2 + sigma x ∗randn(N, 1 ) ;
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y = 4∗exp(−z . ˆ 2 ) − 1 + sigma y ∗randn(N, 1 ) ;

% matr ices f o r r e g r e s s i o n
M = 8 ; % polynomia l order
X = ones (N, 1 ) ;
Y = ones (N, 1 ) ;
for m = 1 :M

X = [X, x . ˆm] ;
Y = [Y, y . ˆm] ;

end

% perform the ACE a lg or i thm
Nitr = 10 ; % number o f i t e r a t i o n s
f = ( x − mean(x , 1 ) ) / std ( x ) ;
g = ( y − mean(y , 1 ) ) / std ( y ) ;
a f v a l s = [ ] ;
b f v a l s = [ ] ;
a g v a l s = [ ] ;
b g v a l s = [ ] ;
c o r v a l s = mean( f .∗ g ) ;
for k = 1 : Nitr

% e s t i m a t e E[ g ( y ) | x ]
c o e f s = (X’∗X)\ (X’∗ g ) ;
f = X∗ c o e f s ;
f = f − mean( f ) ;
f = f . / std ( f ) ;

% e s t i m a t e E[ f ( x ) | y ]
c o e f s = (Y’∗Y)\ (Y’∗ f ) ;
g = Y∗ c o e f s ;
g = g − mean( g ) ;
g = g . / std ( g ) ;

% compute c o r r e l a t i o n
c o r v a l s (end+1) = mean( f .∗ g ) ;

end

% d i s p l a y r e s u l t s
f igure ;
% −−−− measured −−−−
subplot ( 2 , 2 , 1 ) ;
s c a t t e r ( x ( : , 1 ) , y ( : , 1 ) , 1 2 8 ) ;
t i t l e ( ’ Measured data ’ ) ;
xlabel ( ’ x ’ ) ;
ylabel ( ’ y ’ ) ;
% −−−− transformed −−−−
subplot ( 2 , 2 , 2 ) ;
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s c a t t e r ( f , g , 1 2 8 ) ;
t i t l e ( ’ Transformed data ’ ) ;
xlabel ( ’ f ( x ) ’ ) ;
ylabel ( ’ g ( y ) ’ ) ;
% −−−− convergence −−−−
subplot ( 2 , 1 , 2 ) ;
hold a l l ;
plot ( 0 : Nitr , c o r v a l s ) ;
t i t l e ( ’ Transformed data ’ ) ;
ylabel ( ’ Co r r e l a t i on ’ ) ;
xlabel ( ’ I t e r a t i o n ’ ) ;
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