
ECE598: Representation Learning Fall 2017

Lecture 2: Canonical Component Analysis

Lecturer: Pramod Viswanath Scribe: Bryan Clifford and Kaiqing Zhang, Sept. 8, 2017

2.1 Problem Setup

• We’re given 2 data sets each consisting of N samples

{xn}Nn=1 and {yn}Nn=1.

• The data are two totally different measurement modalities of the same hidden (latent) variable.
For example, xn could be a video (vectorized) of a person saying a word and yn could be the
audio from the video, and the latent variable is the word the person is saying. Hence xn and
yn live in different dimensional spaces:

xn ∈ Rdx , yn ∈ Rdy ∀n.

• We will organize the data into row matrices

X = (x1, . . . ,xN )T ∈ RN×dx

Y = (y1, . . . ,yN )T ∈ RN×dy
(2.1)

2.1.1 Goal:

Our goal is to find linear transforms for xn and yn that we can use to reduce the dimensionality of
each data set to the dimension that we think the latent variable is. However, because both data sets
are generated from the same latent variable, we want the transforms to be such that the transformed
xs and ys are maximally covariant. Furthermore we want the transformed xs to be uncorrelated
from themselves (and the same for the transformed ys).

This approach is called Canonical Component/Correlation Analysis (CCA). We’ll call the
transformed variables the canonical variates and we’ll call the correlations between pairs of
transformed variables the canonical correlations.

More formally we want to find vectors {αm}dzm=1 ⊂ Rdx and {βm}dzm=1 ⊂ Rdy that solve the problem

max
{αm}dzm=1

{βm}dzm=1

E
[
(xTαm)(yTβm)

]√
Var [xTαm] Var [yTβm]

s.t. E
[
(xTαm)(xTαk)

]
= E

[
(yTβm)(yTβk)

]
= δm,k.

(2.2)

These vectors {αm}dzm=1 ⊂ Rdx and {βm}dzm=1 ⊂ Rdy are called the canonical directions, and dz
is the dimension of the latent variable space.
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2.2 Solution

This section shows that the solution to the CCA problem (2.2) is to first whiten the data, and then
compute the SVD of the (now whitened) cross-correlation matrix.

The approach to deriving the solution will be to replace the population mean and variances with
the sample mean and variances and then use some linear algebra tricks.

First we will assume that the data is centered (i.e. E [x] = 0, and E [y] = 0). This can be done by
simply subtracting the sample means.

The correlation in the top of the optimization problem (2.2) can be replaced by

E
[
(xTαm)(yTβm)

]
→ 1

N
(Xαm)T (Y βm) (2.3)

and because the data are centered, the variances can be replaced by

Var
[
xTαm

]
→(Xαm)T (Xαm) =

1

N
‖Xαm‖22

Var
[
yTβm

]
→(Y βm)T (Xβm) =

1

N
‖Y βm‖22.

(2.4)

Substituting this into (2.2) we have

max
{αm}dzm=1

{βm}dzm=1

(Xαm)T (Y βm)

‖Xαm‖2‖Y βm‖2

s.t. (Xαm)T (Xαk) = (Y βm)T (Y βk) = δm,k.

(2.5)

Now, to make this easier we want to find a transformation on the αs and βs such that we can
simplify the denominator. This is where whitening comes in. The method is the same for both the
αs and βs as follows

α̃m = A1/2αm →α = A−1/2α̃m

β̃m = B1/2βm →β = B−1/2β̃m

(2.6)

where
A−1/2 =(XTX)−1/2 = Vx diag {1/λx}V T

y

B−1/2 =Y TY = Vy diag {1/λy}V T
y

(2.7)

and where Vx, λx are the matrix of orthonormal eigen vectors and values of XTX respectively, and
similarly for Vy, λy. Note also that A−1/2 and B−1/2 are symmetric.

With this definition we see that

‖Xαm‖22 =αT
mX

TXαm

=α̃T
mA

−1/2XTXA−1/2α̃m

=α̃T
mA

−1/2AA−1/2α̃m

=α̃T
mA

−1/2A1/2A1/2A−1/2α̃m

=‖α̃m‖22

(2.8)
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and similarly for ‖Y βm‖22.

Making the substitutions into (2.5) we have

max
{α̃m}dzm=1

{β̃m}dzm=1

α̃T
mA

−1/2XTY B−1/2β̃m

‖α̃m‖2‖β̃m‖2

s.t. α̃T
mα̃k = β̃T

mβ̃k = δm,k.

(2.9)

By replacing the denominator with a unit norm constraint the problem becomes

max
{α̃m}dzm=1

{β̃m}dzm=1

α̃T
mA

−1/2XTY B−1/2β̃m

s.t. α̃T
mα̃k = β̃T

mβ̃k = δm,k, ‖α̃m‖2 = ‖β̃m‖2 = 1.

(2.10)

The solution to (2.10) should be obvious. It is the SVD of the matrix A−1/2XTY B−1/2, and the
α̃s and β̃s are the left and right singular vectors! The canonical correlations are then given by the
singular values σ1 ≥ σ2 · · · ≥ σdz .

Once the α̃s and β̃s are known, we can compute the canonical directions from (2.6).

2.3 Probabilistic Interpretation

CCA has a very interesting probabilistic interpretation that was proven independently by [Bro79,
BJ06]. The idea in both papers is that x and y are random variables generated by a latent variable
z ∼ N (0, 1) with some additive noise εx ∼ N (0,Ψx), εy ∼ N (0,Ψy), as follows

x =Wxz + µx + εx

y =Wyz + µy + εy
(2.11)

where µx and µy are the means of the measurements and Ψx and Ψy are both semi-positive definite
and z ∈ Rdz has dimension 1 ≤ dz ≤ min{dx, dy}.

Given this setup it is very easy to show that

χ =

(
x
y

)
∼N (µ,Σ), (2.12)

where

µ =

(
µx

µy

)
, Σ =

(
WxW

T
x + Ψx WxW

T
y

WxW
T
y WyW

T
y + Ψy

)
(2.13)

With this formulation, it will be shown that the maximum likelihood (ML) estimates of Wx, Wy,
ψx, ψy, µx, and µy are very closely related to the canonical directions and correlations.
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The ML parameter estimates are symmetric with respect to the variables x and y. The ML estimates
for the parameters are:

Ŵx =Σ̄xxUxMx

Ψ̂x =Σ̄xx − ŴxŴ
T
x

µ̂x =µ̄x

Ŵy =Σ̄yyUyMy

Ψ̂y =Σ̄yy − ŴyŴ
T
y

µ̂y =µ̄y

(2.14)

where Σ̄xx and µ̄x are the sample covariance matrix and mean for x and similarly for y. Ux and
Uy are matrices with columns consisting of the canonical directions for x and y. Mx

and My are arbitrary matrices such that MxM
T
y = diag {σ} where σ is the vector of the first

(largest) dz canonical correlations.

2.3.1 Proof:

The proof is very complicated and tedious although the basic idea is rather simple. The idea is
to compute the log-likelihood function, then come up with a set of conditions for it to have at
stationary points. Using these conditions and some challenging linear algebra, the ML estimates
above can be proven.

It is instructive to see what the log-likelihood function is for this scenario. To start, note that the
PDF of χ is a multivariate Gaussian and is given by

χ ∼ N (χ;µ,Σ) = (2π)−d/2 det{Σ}−1/2 exp{−1

2
(χ− µ)TΣ−1/2(χ− µ)} (2.15)

where d = dx + dy.

The likelihood of the data set is given by

L =

N∏
n=1

N (χn;µ,Σ) (2.16)

and the log-likelihood is thus given by

logL =− 1

2

N∑
n=1

d log 2π + log det{Σ}+ (χn − µ)TΣ−1(χn − µ)

=− N

2

[
d log 2π + log det{Σ}+

1

N

N∑
n=1

(χn − µ)TΣ−1(χn − µ)

]
.

(2.17)

Noting the following (easily verified) matrix relation

xTAx = tr
{
A(xxT )

}
(2.18)
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we have

logL =− N

2

[
d log 2π + log det{Σ}+

1

N

N∑
n=1

tr
{
Σ−1(χn − µ)(χn − µ)T

}]

=− N

2

[
d log 2π + log det{Σ}+ tr

{
Σ−1

(
1

N

N∑
n=1

(χn − µ)(χn − µ)T

)}]

=− N

2

[
d log 2π + log det{Σ}+ tr

{
Σ−1Σ̄

}]
(2.19)

where Σ is the sample covariance.

By differentiating this log-likelihood with respect to the parameters and setting the derivatives to be
zero, a set of conditions can be determined for the parameters for which logL will have stationary
points. With these and some difficult linear algebra, the ML estimates can be found.

2.4 Applications of CCA

2.4.1 A Simple Example

This section provides some simulated examples to illustrate the capabilities of CCA. First we
consider simulated data generated with the model in (2.11). In the following figures, Wx and Wy

are each generated randomly with uniform Gaussian iid elements. The dimensions of the variables
are dx = 10, dy = 5, and dz = 2. The noise is uniform iid noise with Ψx = Ψy = 0.01I.

Figure 2.1 shows the canonical correlations and variates for the first 3 canonical directions. Notice
that the canonical correlation falls off very quickly after the dimension of z. Hence, CCA can be
used to estimate the dimension of the latent variable.

As might be expected, CCA begins to perform more poorly as the number of samples becomes very
small. Figures 2.2 – 2.4 show that as N decreases to near the dimension of x or y, the canonical
correlations all approach 1.
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Figure 2.1: CCA analysis for the model in (2.11) with dx = 10, dy = 5, dz = 2, and N = 100.
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Figure 2.2: CCA analysis for the model in (2.11) with dx = 10, dy = 5, dz = 2, and N = 40.
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Figure 2.3: CCA analysis for the model in (2.11) with dx = 10, dy = 5, dz = 2, and N = 20.
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Figure 2.4: CCA analysis for the model in (2.11) with dx = 10, dy = 5, dz = 2, and N = 10.

2.4.2 Application to Multimodal Signal Fusion

One significant application of CCA is to fuse signals of multiple modalities, where modality here
means sources of data, e.g., text, image, or audio. The reference [NKK+11] is one of the earliest
papers that shows the practical importance of CCA in this problem, the setting of which can be
summarized as follows

• Goal: learn representation features for coupled speech and audio signals which capture the
relationships across the modalities.
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Figure 2.5: Bimodal Deep Autoencoder proposed in [NKK+11].

• Settings:

– Multimodal fusion

– Cross modality learning

– Shared representation learning

• Difficulty:

– The relationship between audio and video data are highly non-linear;

– The modality of data used in supervised training and testing could be different from that
present in feature learning

The authors propose a bimodal deep autoencoder model, with sparse restricted Boltzmann machines
(RBMs) as initialization, for feature learning, as shown in Fig. 2.5. If only one modality presents
as the input, data of the other modality are supplemented with zero values. The model is then
applied to all the three settings and the features learned are compared with other types of features,
including video-only RBM and video-only deep autoencoder, etc., by fed into a linear SVM classifier.
Extensive experiments corroborate the effectiveness of the proposed feature learning model.

The CCA technique is incorporated in the shared representation learning setting, where the modalities
of data used for supervised training and testing are different, while the representation feature is
learned from the Bimodal deep autoencoder as in Fig. 2.5. Three methods for feature learning are
compared

• Raw-CCA: perform CCA directly on concatenated raw video and audio data (see next section);

• RBM-CCA Feature: perform CCA on the features extracted after first layer of RBM ;

• Bimodal Deep Autoencoder: the shared representation from the middle layer as shown in Fig.
2.5.

The experiments show that the RBM-CCA feature outperforms the other two types of features.
This shows that a purely linear correlation captured by Raw-CCA cannot represent the relationship
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between audio and video data efficiently. Interestingly, the features learned from Bimodal deep
autoencoder fail to capture better relationship of two data sources than the simple CCA+single-
layer-RBM s model. This implies that it would be beneficial to perform CCA on the data after some
non-linear transformation, i.e., on f(x) and g(y) with f and g being single-layer-RBMs in this case.
This conclusion motivates the non-linear representation learning techniques we will introduce in
next lecture.

2.4.3 Raw-CCA

In this section we show how CCA can be used to learn shared representations between audio and
visual signals. CCA was performed using a small data set consisting of a video of the same person
saying the sounds /dah/ and /boo/ (6 videos of each) for N = 12. In this case we had x as the
video and y as the audio samples. The duration of each video was 1 s. Each video had a frame rate
of 30 frames/s and was of size 64× 64× 30 so that dx = 122880. The duration of each audio signal
was thus also 1 s and with a sampling rate of 44.1 kHz, dy = 44100.

As discussed in section 2.4.1, since N � max{dx, dy}, CCA is not expected to work very well.
For this reason, we first reduced the dimensionality of each dataset to 2 using SVD. Specifically
if Vx was the matrix of the first 2 right singular vectors of X then we performed CCA using
the matrix X ′ = XVx, and similarly for Y . In this case the canonical directions will represent
linear combinations of the basis vectors in Vx and Vy and so our “real” canonical directions will be
{Vxαm}2m=1 and {Vxαm}2m=1.

The following figures show the canonical variates and correlations for the data set (Fig. 2.6) as well
as the “real” canonical directions in the video and audio spaces (Figs. 2.7 and 2.8 respectively).
Finally Fig. 2.9 shows how the variates can be used to classify (linearly separate) the two phonemes.
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Figure 2.6: CCA analysis for the videos of phonemes with dx = 2, dy = 2, and N = 12.
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α
1

Figure 2.7: The frames of first “real” canonical direction of the video space, α1. Frames are
arranged left to right, top to bottom.

0 0.2 0.4 0.6 0.8 1

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
1

Figure 2.8: The audio waveform of first “real” canonical direction of the audio space, β1.
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Figure 2.9: Discrimination of phonemes using either audio or video signals via the canonical
variates. Blue dots are the variates for the /dah/ movies and red dots are the variates for the /boo/
movies.
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2.5 Summary

In this lecture, we introduce another data analysis technique CCA, which aims to reduce the
dimensions of data from two data sets while preserving the correlation between them as much as
possible. In light of the formulation for PCA, we introduce an SVD-based approach for evaluating
the canonical components efficiently. A probabilistic view of CCA is then presented, with two data
models based on different latent variables. We also introduce a practical application of CCA in fusing
audio and visual signals using deep learning, motivating the use of non-linear data transformation
for CCA.
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2.6 Code

The following is a MATLAB implementation of CCA. Note that there is already a MATLAB routine
for CCA via the function canoncorr.

function [ Alpha , Beta , r , P, Q ] = cca ( X,Y )
%CCA Computes CCA o f X and Y which are row m a t r i c i e s o f d i f f e r e n t data
%m o d a l i t i e s wi th the same number o f rows .
%
% Alpha , Beta = canonc ia l d i r e c t i o n s f o r X and Y r e s p e c t i v e l y
% r = canonica l c o r r e l l a t i o n s
% P, Q = canonica l v a r i a t e s f o r X and Y r e s p e c t i v e l y
%
% Created by Bryan C l i f f o r d @ UIUC, 2017
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Get s i z e s o f data
a s s e r t ( i smat r i x (X) ) ;
a s s e r t ( i smat r i x (Y) ) ;
[N, dx ] = s ize (X) ;
[ ˜ , dy ] = s ize (Y) ;
a s s e r t (N == s ize (Y, 1 ) ) ;

% c e n t e r data
ux = mean(X, 1 ) ;
uy = mean(Y, 1 ) ;
X = X − repmat (ux ,N, 1 ) ;
Y = Y − repmat (uy ,N, 1 ) ;

% compute s p h e r i n g trans forms
[ ˜ , Sx ,Vx ] = svd (X, ’ econ ’ ) ;
[ ˜ , Sy ,Vy ] = svd (Y, ’ econ ’ ) ;
A = Vx∗diag ( 1 . / diag ( Sx ) )∗Vx ’ ;
B = Vy∗diag ( 1 . / diag ( Sy ) )∗Vy ’ ;

% compute canonica l d i r e c t i o n s and c o r r e l l a t i o n s and v a r i a t e s
[ Alpha , r , Beta ] = svd ( A∗X’∗Y∗B, ’ econ ’ ) ;
Alpha = A∗Alpha ;
Beta = B∗Beta ;
r = diag ( r ) ;
P = X∗Alpha ;
Q = Y∗Beta ;

% normal ize f o r u n i t var iance
stdP = diag ( 1 . / std (P , 0 , 1 ) ) ;
Alpha = Alpha∗ stdP ;
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P = P∗ stdP ;

stdQ = diag ( 1 . / std (Q, 0 , 1 ) ) ;
Beta = Beta∗stdQ ;
Q = Q∗stdQ ;

return ;

end
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