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Lecture 1: Principal Component Analysis (PCA)

Lecturer: Pramod Viswanath Scribe: Kaiqing Zhang, Aug. 28, 2017

In this lecture, we study one ubiquitous technique to analyze and represent high dimensional data
in low dimensions, principal component analysis (PCA). We introduce the model of the data, the
formulation that leads to the algorithm, and also a probabilistic view of it.

1.1 Introduction

1.1.1 Model and Problem Statement

Consider the following setting

• Data: {x1,x2, · · · ,xN} with xi ∈ Rd,∀i = 1, · · · , N , where usually d < N and d is large;

• Goal: To represent the data in a lower dimension {x̃1, · · · , x̃N} with x̃i ∈ Rl, where l < d;

• Intuition: Consider a special case where xi = αia,∀i =⇒ x̃i = αi,∀i with l = 1, i.e., all data
can be represented by a scale of one vector a.

We introduce one common technique to achieve the goal of dimension reduction: principal component
analysis. It is a statistical procedure that uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of values of linearly uncorrelated variables
called principal components (or sometimes, principal modes of variation) [Jol86].

Note: In the intuitive example above, we can generalize the setting to

xi = αia + εi, ∀i = 1, · · · , N

where εi is some error or noise of the model. The lower dimensional representation of x̃i = αi is
optimal in some sense if εi follows zero-mean Gaussian distribution. This turns out to be relevant
in the probabilistic view of PCA as seen shortly.

1.1.2 Approach

We first summarize the formulation and approach introduced in class. For ease of notation, we

concatenate the data in a matrix X =
[
x1 · · · xN

]T ∈ RN×d. Without loss of generality, we assume
the data vectors are all centered, i.e., the average of each column of X is zero. Then we formulate the
following matrix approximation problem subject to a low-rank constraint to find the low-dimension
representation of the data. We aim to find the best rank-l approximation Xl by solving

min
Xl

‖X−Xl‖2F (1.1)

s.t. rank(Xl) ≤ l
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where ‖‖F is the Frobenius norm of a matrix.

To solve the rank-constrained optimization problem 1.1, we first perform singular value decomposition
(SVD) on the matrix X. Based on Fundamental Theorem of Linear Algebra, we know that X can
be decomposed as

X = UΛVT (1.2)

where the columns of U ∈ RN×N and V ∈ Rd×d are orthonormal 1, and Λ ∈ RN×d is a diagonal
matrix with entries (λ1, · · · , λd) such that λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. The entries λi are called singular
values of X.

According to Eckart-Young Theorem [EY36], the best rank-l approximation to X in Frobenius norm
X∗l has an analytical form

X∗l =

l∑
i=1

λi · uiv
T
i (1.3)

where ui and vi denote the i-th column of U and V, respectively. Let Λl be a diagonal matrix with

the first l largest singular values λ1, · · · , λl on its diagonal and X̃ :=
[
x̃1 · · · x̃N

]T ∈ RN×l be a
concatenation of low-dimensional representation of data xi,∀i. Then the representation matrix has
the form

X̃ = UΛl. (1.4)

Note: The rank-l approximation to X of the form (1.3) is also optimal with respect to (w.r.t.) the
spectral norm of the matrices difference [EY36].

Note: Since the data are centered, the matrix XTX is also recognized as the empirical sample
covariance matrix of the data. Hence, as in other formulations [Jol86, Smi02], the PCA can also be
conducted by performing eigenvalue decomposition over XTX as

XTX = VΛ2VT

where the columns of V are now the right eigenvectors of XTX and the matrix of low-dimensional
data X̃ becomes

X̃ = XVl

where Vl consists of the first l columns of the matrix V. This eigen-decomposition-based approach
is essentially the same as the SVD-based approach we introduced.

1.1.3 Another Interpretation

Another way to think about PCA is to transform the data to a new coordinate system such that
the projected data with the largest variance lies on the first coordinate (the first component), the
second largest variance on the second coordinate, etc. This can be understood as in [Jol86] that the
components with small variances can be omitted without losing too much information of the data.

1A set of vectors are orthonormal if each is of length one and they are pairwise orthogonal.
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To this end, first note that since the data has zero-mean, E[(xTv)2] becomes the population variance
of the random variable x projected on the direction v provided ‖v‖ = 1. Accordingly, its sample
variance becomes ‖Xv‖2 with the data samples {x1, · · · ,xN} [Jol86]. Therefore, to find the axes of
the coordinate system, the transform is performed in the following recursive way

v1 = arg max
‖v‖2=1

‖Xv‖2 (1.5)

v2 = arg max
‖v‖2=1,v⊥v1

‖Xv‖2

· · ·
vl = arg max

‖v‖2=1,v⊥v1,··· ,vl−1

‖Xv‖2

where the vectors, i.e., the axes v1, · · · ,vl are exactly the first l columns of the orthonormal matrix
V as in (1.2).

Note: This interpretation from a population point of view will be important in understanding the
canonical correlation analysis (CCA) in the next lecture.

1.2 More on SVD and Applications to PCA

As a significant step in performing PCA, singular value decomposition is useful in many tasks,
including the CCA discussed later. Hence we elaborate more on SVD based on the theoretical
introduction in Chapter 3 of [BHK16].

1.2.1 Relation to Eigen-decomposition

The SVD satisfies some analogous relationship as eigen-decomposition. The SVD is defined for all
matrices, while eigen-decomposition is only defined for square matrices. Moreover, to ensure the
eigenvectors to be orthogonal, more conditions are required such as the symmetry of the matrix X.
While the right (left) singular vectors of X are intrinsically orthonormal with no assumptions on X.
In fact, for symmetric and positive semidefinite (PSD) matrices, the singular values and eigenvalues
are identical, so are the singular vectors and eigenvectors.

Any eigenvalue λ and corresponding eigenvector v of a square matrix A satisfy Av = λv. Similarly,
for SVD we have

Xvi = λiui and XTui = λivi.

Note: Since XTXvi = λ2ivi, this shows that λ2i and vi are the eigenvalue and eigenvector of XTX,
respectively.

1.2.2 Best-fit Subspaces

As shown in [BHK16, Chapter 3], the SVD actually finds the best-fitting l-dimensional space of the
N data points. It is best in the sense that it minimizes the sum of squares of the perpendicular
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distances of the data to the subspace. Interestingly, this is equivalent to maximizing the sum of
squares of the lengths of the projections of the points onto this subspace, which is due to the
Pythagorean Theorem [BHK16]. In fact, the length of the projection of xi onto any vector v of unit
length is ‖xT

i v‖. Hence the best fit line is the one maximizes ‖Xv‖22, or equivalently ‖Xv‖2, which
is identical to the variance-maximization-based formulation shown in Section 1.1.3. Therefore, the
recursive procedure (1.5) happens to be the procedure of generating the right singular vectors. The
Theorem 3.1 in [BHK16] verifies that this greedy algorithm works well.

Theorem 1.1 (Theorem 3.1 in [BHK16]). Let v1, · · · ,vd be the singular vectors of the matrix
X ∈ RN×d generated following (1.5), then for 1 ≤ l ≤ d, the subspace spanned by v1, · · · ,vl is the
best-fit l-dimensional subspace for X.

1.2.3 Power Method for SVD

There have been substantial developments on how to compute the SVD in numerical analysis, see
more detailed discussions in [SB13]. Here we present a polynomial-time method, power method,
which is simple to implement but serves as the conceptual basis for many advanced methods. Recall
that XTX = VΛ2VT , making the k-th power of XTX become

(XTX)k = VΛ2VT · · ·VΛ2VT = VΛ2kVT =
d∑

i=1

λ2ki viv
T
i .

Assume λ1 > λ2, then the first term in the summation dominates, i.e., (XTX)k → λ2k1 v1v
T
1 . Hence

a good estimate of v1 can be computed by the first column of (XTX)k and normalize it to a unit
vector. Some improvements on speeding up the method, handling very large and sparse matrices,
and handling the tie for the case λ1 = λ2, are also introduced in [BHK16, Chapter 3].

1.3 A Probabilistic View of PCA

Most of the classical interpretations of PCA is lack of a probabilistic model for the observed data,
which prevents the comparison of PCA with other probabilistic techniques and its applications to
Bayesian settings. A probabilistic view of PCA (PPCA) was thus first proposed by [TB99].

1.3.1 Probability Model

PCA is closely related to another latent variable analysis technique, factor analysis [TB99]. The
setting of the model is

• t ∈ Rl ∼ N (0, I) represents the latent variable of low dimensions l < d

• Data x is viewed as observations of t

• W ∈ Rd×l relates two sets of variables x and t

• ε represents the observation noise following isotropic 2 Gaussian distribution N (0, σ2I).

2Isotropic model means the noise at each coordinate is independent and has identical variance σ2.
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Formally we have

x = Wt + ε. (1.6)

Hence the probability distribution of the observations x is

x ∼ N (0,C)

where C = WWT + σ2I. Hence the corresponding log-likelihood L becomes

L = −N
2
{d · ln(2π) + ln |C|+ tr(C−1S)} (1.7)

where | · | is the determinant of a matrix and S = 1
N

∑N
i=1 xix

T
i is the sample covariance.

1.3.2 Maximum Likelihood Estimation

Maximum likelihood estimators (MLE) are used to find the best model parameters, i.e., W and σ2.
As shown in [TB99], the MLE has closed-form solution as

Ŵ = Ul(Λl − σ2I)1/2R and σ̂2 =
1

d− l

d∑
i=l+1

λi, (1.8)

where R is an arbitrary l × l orthogonal rotation matrix, Ul is the first l columns of U, and Λl is
the diagonal matrix with the first l largest singular values on its diagonal.

Note: Interestingly, due to the non-convexity of L w.r.t. W, Setting the gradient of L will only
lead to stationary points, where some of them are represented by minor singular values (not the
first l principal components). These stationary points are actually saddlepoints on the likelihood
surface [TB99].

1.3.3 Connection to PCA

Unlike the standard PCA, PPCA treats the dimensionality reduction in terms of the conditional
distribution of the latent variable over observations t|x, which has the conditional mean of the
latent variable as

E[ti|xi] = M−1ŴTxi,∀i = 1, · · · , N (1.9)

with M = ŴTŴ + σ2I. Interestingly, as σ2 → 0, M−1 → (ŴTŴ)−1, meaning that (1.9) performs
an orthogonal projection of xi to obtain ti. This reduces to the standard PCA.

Note: In general for the cases σ2 > 0, the reconstruction is not an orthogonal projection of xi and
is therefore not optimal in the squared reconstruction error sense. Although it is still optimal in the
MLE sense.
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1.3.4 EM-based Approach and Applications of PPCA

Besides the closed-form solution as (1.8), the MLE can also be obtained iteratively by the expectation-
maximization (EM) algorithm. EM is a computationally efficient algorithm for probabilistic inference
[DLR77]. Thanks to the probabilistic re-formulation of PCA, this EM algorithm can be applied
to handle the case even with incomplete or missing data. See more applications of PCA that are
benefited from this probabilistic point of view in Section 4 of [TB99].

1.4 Summary

In this lecture, we introduce one of the most commonly used dimensionality reduction algorithm,
PCA. We present an approach to perform PCA based on the low-rank matrix approximation.
Another interpretations and complementary materials about SVD are also provided. In addition,
we also introduce a probabilistic point of view about PCA.
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