
ECE598PV: Representation Learning: Algorithms and Models Fall 2017

Lecture 11: Variational Auto-Encoders

Lecturer: Pramod Viswanath Scribe: Sujan Gonugondla, Oct 21, 2018

11.1 Introduction

Generative modeling is one of the important problems in Machine learning. It deals with estimating
a probability distributions P (X), defined over in high dimensional space X . In this lecture we look
at the problem where we need to construct this probabilistic model (P (X)) given some example
data {X1, X2, .., Xi} of the in the high-dimensional space X . Here each data point Xi could be an
image with millions of pixels, and the task is to capture all the dependencies and the frequency of
these pixels, so that one can sample a entirely new image significantly different from any of the
provided input images Xi. Primarily, we are interested in approximating this distribution using a
neural network.

There are two popular techniques proposed today that attempt to solve this problem, which are:

• Variation auto-encoders (VAEs)[KW13, RMW14]

• Generative adversarial networks (GANs)[GPAM+14]

Both the techniques target to repentant the probability distribution P (X) in the form of a neural
network, which takes a random latent variable Z with a probability P (Z) as input and output a
generated data-point XZ = f(Z) (see Fig. 11.1). Typically P (Z) is a zero mean Gaussian random
variable N (0, 1). The goal of the above algorithms is to approximate a function f using neural nets
so that P (f(Z)) ≈ P (X).

Figure 11.1: Image generation using neural network , by latent space modeling

1

11.2 Background

11.2.1 Latent variable models

Training a generative model with dependencies between dimensions in probability distributions
are typically hard to train. This problem is much more difficult as the number of dimensions are
increases. This problem can be simplified by introducing a random variable in a lower dimensional
space that can be later mapped to the high dimensional space deterministically.

Suppose the we need to approximate a function P (X) defined over a high dimensional space X . It
will be useful to introduce a latent variable in a lower dimensional space Z with a certain probability
distribution P (Z), to map it using a family of deterministic functions fθ(Z), which are parameterized
by θ in some space Θ, where f : Z ×Θ 7→ X . Using this notion of latent space Z. The generative
model learning will be simplified as finding the parameters θ, and the distribution P (Z) such that
P (X) ≈ Pθ(X), where

Pθ(X) =

∫
fθ(Z)P (Z)dZ. (11.1)

For more details refer to [Doe16].

11.2.2 Auto-encoders

Auto-encoders were proposed as a compression/denoising [VLBM08] technique that uses neural
network to map a high dimensional input X ∈ X to a low dimensional space Z ∈ Z, such that it
can be decoded (again using neural networks) to obtain the original image.

The encoder network estimates a low dimensional latent variable Z ∈ Z given an input x ∈ X
represented by Z = fθe(X). The quality of the encoder can be determined by the ability of a
decoder to recover the input data from its representation in its latent space. This is solved by using
an other neural network that maps Z to the higher dimensional space X , represented by fθd(Z) ∈ X
Auto-encoders try to train both the network encoders and decoders together by concatenating them
as shown in Fig. 11.2, and by setting the target outputs of this concatenated network to the inputs.
Thus resulting in the overall target function that needs to learned to be hθe,θd(X) ≈ X.

11.3 Variational Auto-Encoders

The mathematical basis of Variational Auto-encoders (VAEs) have little to do with the classical auto
encoders discussed in Section 11.2.2. VAEs are a learning algorithm that uses the latent variable
model to approximate the target probability distribution P (X). Specifically, it is attempting to find
the parameters θ such that the probability distribution Pθ(X) from Equation 11.1 approximates the
real probability distribution P (X).

The VAEs are called auto encoders as the objective function that needs to minimized is inspired
from the traditional auto encoders (Section 11.2.2). The two major problems that must be deal
with, in order to solve the generative problem defined by Equation 11.1. is to define a latent variable
Z and to deal over the integral over Z. VAE tackle this problems by assuming that the there is no

2

Figure 11.2: A toy example of a variational autoencoder. Here the input image is mapped to a
low-dimensional space using encoder and a decoder is trained to recover the original image by
concatenating both as shown in the figure

Figure 11.3: Variational auto encoders is used to generate image based on a a latent random variable
Z. Encoder provides with the distribution of Z that is likely to generate the required example

simple interpretation of Z, and hence it can be modeled as a simple Gaussian distribution N (0, I),
where I is an identity matrix with dimensions of the space Z. By modeling Z as an uncorrelated
Gaussian random variable, VAEs relax the burden of finding the structure of the latent variable.

Now, the big questions that are to be answered are: ’How to optimize for θ?’, and ’How to find the
function fθ(Z)?’. In order to find the distribution Pθ(X|Z), we may need to know the distribution
P (Z|X), so that we can sample Z that are likely to generate X. This is required to train a neural
net that performed : X = fθ(z). The way VAEs apporch this issue it to define a encoder Qφ(Z|X)
that provides the distribution of Z that is likely to generate X using the decoder(generator), fθ(z).

In VAEs encoder (Qφ(Z|X)) is modeled using a neural network that computes the mean and
variance,

Qφ(Z|X) = N (µφ(X), σφ(X)) (11.2)

While the decoder (generator) estimates data point based on a Z sampled from Qφ(Z|X). VAEs
by imposing this structure, has enabled the training of the encoder and decoder together, using
back-propagation (See Fig. 11.3).

In-order to train this large network, requires us to choose an objective function to minimize over.
We can solve this problem by considering a probability distribution of the Pθ(X) defined over

3

X . The goal of the training is to maximize the log likelihood Pθ(X). That is, to maximize the
probability that the decoder regenerates X. However, it is not clear on how one could practically use
back-propagations using this. We need to find an other objective function that can be empirically
to maximize logPθ(X)

logPθ(X) =

∫
Z
Qφ(Z|X) logPθ(X)dZ (11.3)

=

∫
Z
Qφ(Z|X) log

Pθ(X,Z)

Pθ(Z|X)
dZ (11.4)

=

∫
Z
Qφ(Z|X) log

(
Pθ(X,Z)

Qφ(Z|X)

Qφ(Z|X)

Pθ(Z|X)

)
dZ (11.5)

=

∫
Z
Qφ(Z|X) log

Pθ(X,Z)

Qφ(Z|X)
dZ +

∫
Z
Qφ(Z|X) log

Qφ(Z|X)

Pθ(Z|X)
dZ (11.6)

= L(Pθ, Qφ) +DKL(Qφ, Pθ) (11.7)

The second term DKL(Qφ, Pθ) can be assumed to be small as we expect Qφ(Z|X) to approximate
well. While the first term L(Pθ, Qφ) forms the empirical lower bound of the log likelihood logPθ(X).
In order to maximize the log likelihood, logPθ(X) we need to maximize L(Pθ, Qφ).

logPθ(X) ≥ L(Pθ, Qφ) =

∫
Z
Qφ(Z|X) log

Pθ(X,Z)

Qφ(Z|X)
dZ (11.8)

=

∫
Z
Qφ(Z|X) log

Pθ(X|Z)P (Z)

Qφ(Z|X)
dZ (11.9)

=

∫
Z
Qφ(Z|X) logPθ(X|Z)dZ +

∫
Z
Qφ(Z|X) log

P (Z)

Qφ(Z|X)
dZ (11.10)

= Eqφ [log pθ(X|Z)]−DKL(Qφ, P) (11.11)

Here since Qφ(Z|X) and P (Z) are Gaussian random variables,

Qφ(Z|X) = N (µφ, σφ), (11.12)

Pφ(Z) = N (0, I), (11.13)

we can analytically estimate that −DKL(Qφ, P).

DKL(Qφ, P) =

∫
Z
Qφ(Z|X) log

P (Z)

Qφ(Z|X)
dZ (11.14)

=

∫
Z
Qφ(Z|X) logP (Z)dZ −

∫
Z
Qφ(Z|X) logQφ(Z|X)dZ (11.15)

4

=

∫
Z
N (µφ, σφ) logN (0, I)dZ −

∫
Z
N (µφ, σφ) logN (µφ, σφ)dZ (11.16)

=

(
− Nz

2π
− 1

2

j=NZ∑
j=1

(µ2φ,j + σ2φ,j)

)
+

(
− Nz

2π
− 1

2

j=NZ∑
j=1

(1 + log σ2φ,j)

)
(11.17)

=
1

2

(j=NZ∑
j=1

(1 + log σ2φ,j − µ2φ,j − σ2φ,j)
)

(11.18)

Now that DKL(Qφ, P) is estimated analytically Eqφ [log pθ(X|Z)] can be estimated only empirically.
Intuitively, the KL divergence term can be interpreted as a regularization while the Eqφ [log pθ(X|Z)]
is the term estimating reconstruction quality. Observe that the Eqφ [log pθ(X|Z)] is an estimate
of the likelihood of the reconstruction via the decoder when generated with Z sampled from the
distribution obtained by the encoder. This can be empirically approximated as

Eqφ [log pθ(X|Z)] =
1

L

L∑
i=1

log pθ(X|Zi) (11.19)

Using this empirical cost functions gradients can be taken estimated for techniques such as stochastic
gradient descent algorithm to train a network as described in Fig. 11.3. The empirical cost function
is given by

L̃(Pθ, Qφ) =
1

2

(j=NZ∑
j=1

(1 + log σ2φ,j − µ2φ,j − σ2φ,j)
)

+ frac1L

L∑
i=1

pθ(X|Zi) (11.20)

However in-order to use the standard tools for stochastic gradient descent is is good to avoid the
sampling step, where Z is sampled from the distribution obtained from the encoder Qφ(Z|X). This

is achieved by sampling Ẑ from a a zero mean normal distribution N (0, I). And using this as in
input of the network, were the sampling step is replaced by a multiplication and addition using,

Z = µφ + σφẐ. (11.21)

This re parametrization trick is described in the Fig. 11.4.

During practical implementations the log likelihood is maximized, frac1L
∑L

i=1 pθ(X|Zi) using a L2

distance metrics to minimize on. However there could be many different way in assessing similarity
of the input and output image. Some of the generated images using VAEs are shown in Fig. ??

11.4 Extensions to Variational Auto-encoders

Since its first inceptions there have been many works that have proposed variations over the original
algorithm to address applications needs. I have restricted a couple of interesting works, though
there are many more interesting works that can be talked about,

5

Figure 11.4: The re-parameterization trick allows the variational auto encoder to behave like a
standard neural network for training using the stranded tools. Here the input X is sampled from
the set of training images while Z is sampled from a N (0, I). Figure obtained from [Doe16]

(a) (b)

Figure 11.5: Images generated using Variational Auto Encoders: a) Using MNIST dataset [Doe16]
b) Using XX dataset [RMW14]

6

Figure 11.6: Conditional Variational Auto-Encoders. Figure from [Doe16]

Figure 11.7: Image completion using the CVAEs, the shaded quarters on the top were provided
while the unshaded part of the image was generated. Figure from [SLY15]

11.4.1 Conditional Variational Autoencoders

Conditional Variational Auto-encoders (CVAE) is proposed [SLY15] as an extension on VAEs that
imposes some structural constraints on the output based on the priors X. The conditional generative
process of the model is given in Fig. 11.6 as follows: for given observation X, Z is drawn from
the prior distribution Qφ(z|x), and the output y is generated. Here the output Y is generated
conditioned on the input X and some latent variable Z. This can be used for image completion as
shown for the MNIST in Fig. 11.7

11.4.2 Deep Convolutional Inverse Graphics Network

This work proposed by Tejas D. Kulkarni et, al. [KWKT15] attempts to model Z so as to obtain a
specific output based on the latent variable Z. Here they train the VAE so that latent variables Z
represent a specific transformation of the input (See Fig. 11.8). The Fig. 11.9 shows the outputs
obtained by training using this method.

7

Figure 11.8: The Convolutional VAE (DCIGN) that is proposed to generate images with transfor-
mation given a provided image. Figure from [KWKT15].

Figure 11.9: Images generated using the DCIGN. Figure from [KWKT15].

8

Bibliography

[Doe16] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908,
2016.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[KWKT15] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep
convolutional inverse graphics network. In Advances in Neural Information Processing
Systems, pages 2539–2547, 2015.

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

[SLY15] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output represen-
tation using deep conditional generative models. In Advances in Neural Information
Processing Systems, pages 3483–3491, 2015.

[VLBM08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on Machine learning, pages 1096–1103. ACM, 2008.

9

	11.1 Introduction
	11.2 Background
	11.2.1 Latent variable models
	11.2.2 Auto-encoders

	11.3 Variational Auto-Encoders
	11.4 Extensions to Variational Auto-encoders
	11.4.1 Conditional Variational Autoencoders
	11.4.2 Deep Convolutional Inverse Graphics Network

