
Aerie: Flexible File-System Interfaces to Storage-Class Memory

Haris Volos†, Sanketh Nalli∗, Sankarlingam Panneerselvam∗,
Venkatanathan Varadarajan∗, Prashant Saxena∗ and Michael M. Swift∗

†HP Labs, Palo Alto and ∗University of Wisconsin–Madison
haris.volos@hp.com, {sankey, sankarp, venkatv, prashant, swift}@cs.wisc.edu

Abstract

Storage-class memory technologies such as phase-change
memory and memristors present a radically different inter-
face to storage than existing block devices. As a result, they
provide a unique opportunity to re-examine storage architec-
tures. We find that the existing kernel-based stack of compo-
nents, well suited for disks, unnecessarily limits the design
and implementation of file systems for this new technology.

We present Aerie, a flexible file-system architecture that
exposes storage-class memory to user-mode programs so
they can access files without kernel interaction. Aerie can
implement a generic POSIX-like file system with perfor-
mance similar to or better than a kernel implementation. The
main benefit of Aerie, though, comes from enabling applica-
tions to optimize the file system interface. We demonstrate
a specialized file system that reduces a hierarchical file sys-
tem abstraction to a key/value store with fewer consistency
guarantees but 20-109% higher performance than a kernel
file system.

1. Introduction
New device technologies such as phase-change-memory
(PCM), spin-transfer-torque RAM (STT-RAM), flash-backed
DRAM and memristors provide persistent storage near the
speed of DRAM. These technologies collectively are termed
storage-class memory (SCM) [20] as data can be accessed
directly through ordinary load/store instructions rather than
through I/O requests. Direct access reduces software layer-
ing overheads found in deep storage stacks of existing oper-
ating systems, which can be a major contributor of overhead
to access latency for fast SCM.

Recent work has explored high-performance storage-
system designs targeted for SCM. Proposed kernel-mode

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Eurosys 2014, April 13–16, 2014, Amsterdam, Netherlands.
Copyright © 2014 ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592810

file-systems reduce access latency to SCM and provide
faster persistence through less buffering and by removing
the block driver layer [3, 14, 55]. Other designs improve
data access performance by enabling user-mode access to
file data [10, 18]. All this work improves file-system per-
formance considerably while maintaining the traditional
POSIX file-system interface and its benefits, such as legacy-
support, naming, and protected sharing. Unfortunately, we
show that this interface precludes applications from enjoy-
ing the raw fast persistence speed of SCM. Other work pro-
posed exposing SCM directly to programmers by providing
a persistent memory interface to SCM [13, 52]. Applications
can tap into the performance of SCM but they also lose im-
portant file-system features such as sharing semantics and
global naming.

We propose that SCM no longer requires the OS kernel
to provide the file-system interface to storage. The standard
load/store interface of SCM deprecates the need for abstract-
ing details of the specific storage device through a kernel
driver, and the kernel no longer needs to mediate every ac-
cess to storage for protection as virtual memory hardware
can protect access to individual data pages. Instead, we sug-
gest that user-mode libraries should implement and provide
the file-system interface and functionality. This can provide
two key benefits: (i) low-latency access to data by removing
layers of code, and (ii) flexibility by enabling applications to
define their own file-system interface semantics and opera-
tions regarding metadata. For example, a mail message store
that operates on many small files can have a get/put interface
rather than open/read/write/close to reduce the setup cost
when accessing files. Nevertheless, there are several chal-
lenges that such an approach needs to address, such as ensur-
ing that a malicious or buggy user-mode client does not cor-
rupt the file system, supporting sharing and concurrency be-
tween multiple untrusted clients, and enabling fine-grained
permissions not possible with hardware alone.

Based on this idea, we designed the Aerie architecture to
expose file-system data stored in SCM directly to user-mode
programs. Applications link to a file-system library that pro-
vides local access to data and communicates with a ser-
vice for coordination. The OS kernel provides only coarse-
grained allocation and protection, and most functionality is

distributed to client programs. For read-only workloads, ap-
plications can access data and metadata through memory
with calls to the file-system service only for coarse-grained
synchronization. When writing data, applications can mod-
ify data directly but must contact the file-system service to
update metadata.

We implement two file-system interfaces on the same lay-
out with Aerie: (i) PXFS, a POSIX-style file system opti-
mized for sequential sharing of files, and (ii) FlatFS, a spe-
cialized file system optimized for small-file access through a
put/get interface. Our experiments show that PXFS performs
between only 22% slower than RamFS, which lacks con-
sistency guarantees, and 17% faster on average than ext4.
Thus, a standard file-system interface based on Aerie per-
forms sufficiently well to replace a kernel file system. This
is important as it enables the adoption of user-mode library
file systems and any further interface optimizations enabled
through them. The specialized FlatFS interface performs up
to 45% faster than the fast kernel file system without crash
consistency and 109% faster than a kernel file system with
crash consistency. Thus, distributing file system functional-
ity to client processes allows flexible implementations that
dramatically improve performance.

2. Storage-Class Memory

Emerging storage-class memory (SCM) technologies promise
to change many assumptions about storage. They have the
persistence of storage but the fine-grained access of mem-
ory, and can be attached to the memory bus and accessed
through load and store instructions [20]. Four recent tech-
nologies provide SCM capabilities: phase-change memory
(PCM) [36], spin-transfer-torque MRAM [31], flash-backed
DRAM [49], and memristors [47]. While the performance
and reliability details differ, they all provide byte-granularity
access and the ability to store data persistently across reboots
without battery backing. SCMs are currently commercially
available in modest sizes of up to 8GB [49].

The unique properties of SCM enable direct access from
user mode. As memory, SCM can be protected by exist-
ing memory-translation hardware. Furthermore, it has much
less need for scheduling to optimize latency, as there are no
long seek or rotation delays. Because SCM provides speeds
near DRAM, shared caching may not be as necessary. Fi-
nally, SCM does not require a driver for data access as it
can implement a standard load/store or protected DMA in-
terface [10]. Previous work on kernel-mode file-systems, in-
cluding BPFS [14], SCMFS [55], and PMFS [3], has pro-
posed removing some of the kernel layers, such as schedul-
ing and drivers, to reduce access latency to SCM and provide
faster persistence. Quill [18] and Moneta-D [10] further im-
prove data access performance by enabling user-mode ac-
cess to file data through memory mapping files and user-
mode DMA respectively. While these works improve file-

0%#

20%#

40%#

60%#

80%#

100%#

stat#(1.8)# open#(2.4)# create#(4.1)# rename#(5.8)# unlink#(5.1)#
Entry#Func>on# File#Descriptors# Synchroniza>on#
Memory#Objects# Naming#

Figure 1: Breakdown of the time spent in the Linux Virtual
File System (VFS) layer. Open and create include a close opera-
tion. Numbers in parentheses represent the average execution time
in microseconds.

system performance considerably, the fixed and inefficient
POSIX interface can limit the benefits (Section 3).

3. The Abstraction Cost of a File
The Unix file-system architecture and POSIX file-system in-
terface introduce two sources of overhead. First, there is a
cost of changing modes and cache pollution from entering
the kernel [46]. Second, there is a cost due to the generality
of the file-system interface that abstracts every system re-
source as a file. Generality offers programming convenience
but comes at the cost of implementing interoperability be-
tween resources, such as disk files and network sockets, by
associating all resources with common generic data struc-
tures, namely reference-counted file descriptors, in-memory
inodes and dentry objects. For slow disks, abstraction comes
at a relatively low cost. However, for fast SCM, similarly to
fast networking [27], abstraction becomes expensive as the
I/O cost is substantially lower.

We quantify the file abstraction cost by measuring the
cost of common file-system operations. Our focus is on
namespace operations, which are metadata intensive. We
perform each set of measurements over 1 million files or-
ganized in a 3-level-deep hierarchy and stored in an ext4

file system on a RAM-disk. Our experiments start with cold
inode and dentry caches to capture the cost of creating such
in-memory objects. We use the perf profiling utility to ob-
tain a breakdown of the time spent in the virtual file system
(VFS) layer of x86 64 Linux 3.2.2 running on 2.4GHz Intel
Xeon E5645 six-core machine.

Figure 1 shows this breakdown organized in five cat-
egories: (i) entry function for the time spent in the main
routine of each VFS operation including the system call
overhead, (ii) file descriptors for the cost of managing file-
descriptors. (iii) synchronization for the cost of executing
synchronization operations such as read-copy-update (RCU)
and lock operations, (iv) memory objects for the cost of man-
aging in-memory inodes and dentries, and (v) naming for the
cost of hierarchical names.

We make two main observations. First, we observe that
even a simple stat system call takes 1.8µs, which is about

25x slower than reading from PCM with a read latency of
70ns. Second, on average 87% of the VFS time is spent in
supporting generic semantics through generic synchroniza-
tion, generic hierarchical names, and in-memory objects.
Specifically, synchronization needed to support concurrent
operations and concurrency semantics accounts for 26% of
VFS time on average, even though our measurements use a
single thread of execution. Thus, this cost represents the un-
contended best case and we expect this to rise with a larger
number of threads. Generic hierarchical naming consumes
on average 27% of VFS time. The majority of the time is
spent in looking up and resolving each path-name compo-
nent, including access control. This cost is proportional to
the path components that need to be resolved and we expect
this overhead to become worse with deep naming hierarchies
that often arise in modern file systems [5]. Finally, the re-
maining 34% of VFS time is associated with managing in-
memory inodes and dentries, which includes the cost for al-
locating, initializing, accessing, reference counting, and de-
stroying such objects.

We believe the above observations have interesting impli-
cations for the design of file-system interfaces for fast SCM.
While in-memory objects (e.g., inodes and dentries) help im-
prove performance of slow storage at a relative low cost,
they add substantial cost with fast SCM and eradicating them
may reduce latency. However, current file-system semantics
often require in-memory objects: for example, POSIX shar-
ing semantics allows files to be unlinked while open, which
requires data structures to track users of open files. To the
question “was the ‘unlink but leave around for anyone with
it open’ a motivation for inode’s in Unix or just a lucky/un-
lucky consequence?”, Ken Thompson’s concise response “it
was deliberate” reiterates that the use of in-memory inodes
to support this feature has not been accidental [1]. When
originally proposed, the performance cost of these seman-
tics was negligible and they provide obvious utility. However
with fast storage, their performance cost is high for applica-
tions that do not need them. We would therefore like to have
applications pay this overhead only when needed.

Similarly, to remove unnecessary naming overheads, we
would like to be able to support other naming structures
in addition to hierarchical names, such as flat tag-based
names or object namespaces. This would help applications
that today layer their own naming solution on top of a file-
system namespace, such as photo stores [9] and IMAP mail
servers [16], avoid paying the extra overhead for the under-
lying file system namespace.

In summary, the file-system interface provides useful fea-
tures, such as organizing data under a global logical names-
pace for easy access and protecting data for secure sharing
between applications. Moving forward, we believe that such
features will remain relevant. However, limiting ourselves to
accessing these features via a single generic interface and

OS SCM Manager

Read/Write Data
Read Metadata

Coordinate
Update Metadata

Read/
WriteAllocate/Protect

APP
HW

S
C
M

Access Software Protected
Data/Metadata

Trusted FS
Service

FS Library

APP

Figure 2: Decentralized Architecture. Functionality is split be-
tween a user-mode library, a trusted service, and the kernel.

semantics (as we do today with the POSIX interface) may
unnecessarily hurt performance.

4. Design
We designed Aerie with the main goal of providing appli-
cations with flexibility in defining their own file-system in-
terface and implementation for high-performance access to
SCM.

4.1 Direct Access

The main enabling mechanism for Aerie is direct access
through memory to file-system data and metadata from user-
mode file-system libraries. Direct access to metadata en-
ables flexibility as the user-mode library implementation can
optimize interface semantics and operations regarding meta-
data to the specific needs of the class of applications it tar-
gets. Direct access also avoids the costs of calling into the
kernel [46].

With direct access though, a malicious program can cor-
rupt and violate file-system invariants, such as inserting two
files with the same name in a directory. Fundamentally, ad-
dressing this concern requires a trusted entity [33, 45] or
that all clients validate metadata [40]. One design approach
would be to resort to a purely centralized service that me-
diates every access to the file system. However, such a de-
sign would require frequent invocations to the trusted ser-
vice [38] and eliminate the performance benefits of direct ac-
cess. Aerie relies on a combination of hardware and software
to efficiently address this challenge as we describe next.

4.2 Decentralized Architecture

Figure 2 illustrates Aerie’s decentralized architecture. Aerie
distributes the file system implementation between an un-
trusted user-mode library (libFS) and a trusted file-system
service (TFS). The library provides the file-system interface,
including naming and data access. The service supports co-
operation between mutually distrustful programs by enforc-
ing metadata integrity and synchronization. Our design opti-
mizes for the common case of sequential sharing rather than
concurrent [4] to reduce communication with the service.

Programs with concurrent access may be better served by
a centralized file system. Aerie reduces the kernel’s role to
just multiplexing physical memory via the SCM manager.

In order to support multiple file systems, an OS may run
multiple implementations of the library and the service, one
for each file system layout. The kernel code, though, is com-
mon to all file systems. In addition, a single file-system lay-
out may have multiple libFS implementations optimized for
different workloads. In such a case, a single TFS may con-
tain interface-specific logic to manage metadata and syn-
chronization for each interface it supports.

libFS Client Library. Applications link against a libFS
library for each file-system interface they use. Virtual-
memory protection hardware enforces access control over
file system data and read-only access to metadata that the
client is allowed to access. This allows the client library
to service most file-system operations directly from SCM
without contacting a trusted service. Specifically, the library
provides functionality to find and access data: lookup to map
file names to file metadata, and indexing to translate a file
offset into a byte in memory. For example, when an appli-
cation opens a file, the library accesses directory contents in
SCM to locate the file and can then read file data directly
from SCM as well. The client also implements logic to in-
voke the TFS for operation on file-system state that cannot
be enforced by hardware, such as enforcing file-system in-
variants over metadata. Clients can batch metadata updates
to further reduce communication with the TFS.

Trusted File System Service (TFS). Functionality that re-
quires a trusted third party but not privileged hardware ac-
cess, such as integrity for metadata updates and concurrency
control between processes, executes in the TFS. For concur-
rency control, the TFS provides a distributed lock service
that issues leases to clients. The service also provides com-
plete file system functionality on data for which memory
protection is too coarse, as in the case of write-only files that
typical memory protection hardware cannot support. TFS
runs as a user-mode process accessed via RPC.

SCM Manager. Operations requiring hardware privileges,
such as modifying memory permissions or virtual address
mappings, must execute in the kernel. The SCM manager
provides a storage allocation mechanism that is independent
of high-level file system organization. Specifically, it pro-
vides an interface to allocate large chunks of SCM to a file-
system volume, mount a file system by mapping it into a
client process, and apply protections for client processes.

4.3 Putting it All Together: The Life of a Shared File

To demonstrate how everything fits together, we present an
example where a process creates a file, writes some data,
changes permissions, and then another process reads the file
and finally deletes it. To create the file, the first process in-
vokes the lock service via RPC to acquire locks on the di-
rectory that will contain the new file and on the file itself. To

allocate space for storing file metadata and data, the process
calls the TFS, which in turn calls into the kernel SCM man-
ager to allocate and map SCM pages to the file system. The
process can then write data directly without further invok-
ing the service but logs any metadata modifications required
for creating a directory entry, changing permissions, and re-
sizing the file. When another process opens and reads the
file, that process invokes the lock service to acquire neces-
sary directory and file locks. The service then revokes locks
held by the first process, at which point the process sends
outstanding metadata updates to the service. The service ap-
plies the metadata updates before it hands the locks to the
read process. The reading process can then read file data di-
rectly. When done, it deletes the file by logging metadata
modifications to remove the file’s directory entry and mark-
ing allocated space as free.

If a client fails with outstanding updates, TFS revokes
locks held by the client. This implicitly discards the client’s
outstanding metadata updates that it did not ship to the
service. This enforces metadata integrity but allows client
newly written data to be lost if it was not linked to a file.
Clients can avoid losing new data by forcing shipping meta-
data via the libfs sync interface, which is the library
equivalent of fsync.

4.4 Limitations

Aerie relies on the memory controller or memory device to
implement necessary reliability mechanisms to address wear
and that such mechanisms are robust to malicious attacks
that aim to overwhelm the anti-wearout mechanism [13,
42].

5. Implementation
We implemented Aerie on Linux 3.2.2 for x86-64 proces-
sors. In this section we present the implementation of the
kernel SCM manager and the functionality of user-mode
components TFS and libFS for key file system features. We
defer the discussion of two file system interfaces to Sec-
tion 6. The SCM manager comprises 650 lines of C code and
the user-mode components comprise 16,930 lines of C++
code.

5.1 Infrastructure Services

Aerie is relies on a set of infrastructure mechanisms for inter-
process communication, consistently updating data in SCM,
and distributed concurrency control.

Interprocess Communication. We use remote-procedure
call (RPC) implemented using sockets on the loopback in-
terface for communication between clients and the server.
The server is multithreaded and can handle multiple RPC
requests concurrently. Batching of metadata operations at a
client (Section 5.3.5) helps take RPC off the critical path
for most operations. An RPC implementation based on a de-
sign compatible with recent operating system redesigns for

many-core processors could further help reduce the cost of
communication [8].

Persistence Primitives. We borrow the persistence prim-
itives from Mnemosyne [52] to support consistently updat-
ing file system structures in SCM in the presence of fail-
ures. We implement them through regular x86 instructions
and provide three basic operations: (1) wlflush uses x86
clflush to write and flush a cache line out of the pro-
cessor cache into SCM for persistence, (2) bflush uses x86
mfence to flush the processor write-combining (WC) buffers
into SCM for persistence, and (3) fence uses x86 mfence

to order writes to SCM. We assume that the memory con-
troller guarantees atomicity of 64-bit updates [14]. We use
these primitives to implement our higher-level consistency
mechanisms and a persistent log for redo logging. Writes
to the log are done using x86 streaming instructions (which
buffer writes in WC buffers and enable high bandwidth for
sequential writes). Flush of the log writes to SCM is done
through bflush. Hardware support for committing transac-
tions [12, 24] would reduce the overhead of consistency.

Distributed Lock Service. We implement distributed con-
currency control with a centralized lock service executing in
the TFS service. The lock service provides multiple-reader,
single-writer locks identified by a 64-bit identifier. Our im-
plementation derives from prior lock services for storage
systems [25, 26, 32, 50]. However, because our lock ser-
vice is intended for a single machine, we do not replicate
the service for fault tolerance. Aerie does not use Linux’s
futexes [17] because it must be able to revoke locks.

Clients access the lock service via a local clerk in libFS.
When a client thread requests a lock, the clerk invokes the
lock service to acquire a global lock that synchronizes the
client with other processes. The clerk then issues a local
lightweight mutex that client threads use to synchronize
within the process. When another process requests conflict-
ing access to the lock, the service calls the clerk back to re-
voke the lock. The clerk may hold the lock after a thread
releases the local mutex. It releases the global lock when it
has not been used recently or when the lock service calls
back to revoke the lock. If the lock is in use when a callback
arrives, the clerk prevents additional threads from acquiring
the local mutex and releases the global lock when the local
mutex is released. Clients of the lock service are responsible
for preventing deadlocks by ordering or preempting locks.

An unresponsive client can deny service to the file system
due to bugs or malicious behavior. This occurs in any system
with mandatory file locks, such as Windows. Aerie addresses
denial-of-service by attaching a lease to each lock that must
be renewed by the clerk [25]. A client that does not renew its
lease implicitly releases the lock and allows other processes
to proceed.

5.2 SCM Manager

The SCM manager is a kernel component, whose responsi-
bility is allocation, mapping, and protection of SCM.

Allocation. The SCM manager is designed for allocating a
small number of large static memory partitions. It allocates
contiguous regions of physical memory using first-fit. The
SCM manager stores a table listing each partition and an
access control list indicating who can modify or access the
partition, typically the TFS. As with all data structures in
Aerie, the SCM manager stores the partition table in SCM
and uses persistence primitives to assure consistent updates.

Mapping. Once allocated, a partition can be mapped into
any process with the scm mount partition API. In order to
reduce the overhead of page tables, the SCM manager uses
a linear mapping of physical addresses that can be computed
from a single virtual base address (similar to Direct Seg-
ments [7]), and maps SCM at the same virtual address in
all processes. Thus, mounting a partition does not populate
the page table but instead leaves that to ensuing page faults.
This effectively treats the page table as a giant software TLB,
similar to Mach’s pmap structure [43]. As a result, page tables
are dynamic structures that need not be stored in SCM.

The SCM manager further reduces the space overhead of
the page table by aggressively sharing page tables between
processes. All processes with the same access to files—those
with the same user and group IDs—share the entire page
table branch mapping SCM.

Protection. The unit of protection in Aerie is the extent,
which is a range of memory within a partition associated
with protection rights assigned by higher-level software. The
SCM manager stores extents in a radix tree corresponding
to the page-table layout. Each extent consists of a starting
address, length, and a 32-bit ACL identifier. The 30 high
bits represent a group identifier (GID) and the lowest 2 bits
represent the memory protection rights (read, write). The
scm create extent API takes a starting address and length
in pages and creates an extent structure. The scm mprotect -

extent changes the protection on an extent. Only processes
with write access to a partition can manipulate extents. At
run time each process inherits and maintains the user’s group
memberships in a hash table. On a fault, the manager uses
the GID of the extent as a key in the hash table to quickly
decide if the process has access to the extent.

Changing permissions on an extent is more expensive
than changing permission on a file because permissions must
be changed for all pages in the file and for all clients of the
file system. To avoid synchronously modifying many page
tables, the SCM manager instead invalidates portions of the
page table mapping the affected extents (if they were valid),
and allows them to be faulted back in later. Thus, clients
implicitly communicate with the kernel to reload mappings
when protection changes.

tag

extent1

key0 oid0
key1 oid1

key2 oid2

bucket

bucket

extent0

extent2

Collection: key --> object ID (oid)

bucket

mFile: offset --> data extent ID
extent0 (metadata)

data data data

extent1 (metadata)

extent2 extent3 extent5

...

extent4 (metadata)

tag

tag

Figure 3: Collection and mFile objects. Link pointers connect-
ing extents store the virtual address of an extent. Dashed rectangles
around extents show memory protection. All extents comprising an
object share the same ACL.

We borrow a technique from single address space oper-
ating systems to handle page faults [11]. When a page fault
occurs, the SCM manager computes a new page table entry
from the linear mapping and the permissions stored in the
extent tree. On processor architectures with support for sep-
arating protection from addressing [35], only a single page
table would be needed.

5.3 File System Features

libFS and the TFS cooperate together to provide the func-
tionality for key file system features.

5.3.1 Naming

Aerie implements mechanisms for low- and high-level nam-
ing. For low-level naming, each file-system storage object
(described below) is identified by a 64-bit storage object ID
(OID). The six least-significant bits encode the type of the
object and the remaining 58 bits encode the virtual memory
address where the object is stored, which corresponds to the
virtual address of the head extent of the object. This encod-
ing enforces a minimum object size of 64-bytes and provides
64 different types. As a result, locating an object given its
OID requires no lookup of its address, but it cannot be re-
located in memory. We did not find the lack of relocation
to be an issue in the file systems we implemented. Objects
can grow arbitrarily large without having to be relocated be-
cause they are not linear regions of virtual memory but are a
structure composed of multiple extents.

Aerie provides the collection object type for building
higher-level naming structures, such as directories. The col-
lection object provides an associative interface for storing
key-value pairs. We implement collections as a linear hash
table that is packed into extents as shown in Figure 3. The
hash table is organized into fixed-size buckets, which store
key-value pairs. A key is an array of bytes of arbitrary length
and the value field stores a 64-bit storage object ID. A tag
preceding the key records the key length. When the hash ta-
ble fills, we attach additional extents and rehash some ex-

isting elements into the new extents. We perform consistent
updates using shadow updates, so new extents are allocated
and populated and then linked into the hash table with a
single 64-bit atomic write to a pointer. We delete items by
marking them using a tombstone key. When the number of
tombstones rises above a configurable threshold, we rehash
the live key-value pairs into a new table and then update the
collection’s header to point to the new table with a single
64-bit atomic write.

The untrusted library can safely read collection contents
directly without communicating with the service. Thus, di-
rectory operations such as traverse, read, and open are han-
dled by locating collections and reading them directly.

5.3.2 Indexing

Aerie provides the memory file (mFile) object type for map-
ping offsets to extents. mFiles provide access to a range of
bytes starting at a specified offset and can be used to im-
plement data files. We implement the mFile as a radix tree
of indirect blocks that point to fixed-size extents. Larger ex-
tents are broken into pieces when added to the tree. Similarly
to collections, clients can read mFiles without invoking the
service. Thus, clients can locate and read/write file extents
directly.

5.3.3 Protection

Aerie requires a client to assign protection to storage ob-
jects through the service to ensure that all objects’ extents re-
ceive the same protection rights. The service uses the scm -

mprotect extent API to propagate protection down to the
object’s extents.

Although hardware-enforced protection enables us to ef-
ficiently enforce file-system level permissions, it may be too
rigid to directly represent the whole spectrum of permis-
sions. Memory typically grants read or read/write access,
while files may have write-only access. In addition, metadata
may have semantically richer permissions, such as directory
list and traverse. Enabling, for example, both list and tra-
verse can be enforced in hardware through read access to al-
low reading directory contents. However, enabling only one
the two, for example traverse-only, requires hardware to en-
force no-access to prevent listing directory contents, which
prevents both.

Thus, the library can directly access any storage memory
allowed by memory protection. Since protection is stricter
than permissions, the library calls into the TFS for any oper-
ations allowed by file system level permissions but prevented
by memory protection, as in the case of write-only files or
traverse-only directories.

5.3.4 Concurrency

Aerie performs concurrency control over file-system objects
using the distributed lock service (Section 5.1). We assign a
unique global lock to every object. A client requests a lock
that covers an object, and can use that until it is done or the

lock is revoked. The TFS requires that clients hold a lock in
write mode covering an object when sending metadata up-
dates to the TFS. Clients, though, can treat locks as advisory
because data is already available through memory. A file
system interface is free to provide applications any degree
of consistency and concurrency semantics. Thus, a client li-
brary can choose when to acquire locks and how long to hold
them to implement different consistency levels [19, 26]. For
example, Windows file systems provide mandatory locking,
while POSIX file systems do not.

File system implementations may organize locks hierar-
chically to reduce calls into the service. When acquiring a
hierarchical lock, clients can access descendants of an ob-
ject without additional calls. We extend the basic lock man-
ager to provide three modes for each lock: explicit, meaning
the lock covers only a single object; hierarchical, meaning
it covers the object and its descendants, and intent, meaning
that the object is not locked, but a descendant may be. The
clerk in libFS implements the hierarchical locking logic. If
it holds a hierarchical lock, the clerk answers requests for
locks on descendant objects locally and issues local mu-
texes. For example, a client can lock a directory of files
using a global lock and then acquire local mutexes on in-
dividual files. The clerk de-escalates in response to revoca-
tions [32]. When another thread requests conflicting access
to a resource protected by a hierarchical lock, the clerk will
request locks lower in the hierarchy and release the high-
level lock.

When an object is a member of multiple collections, such
as a file hard linked to multiple directories, hierarchical
locking no longer works. The classic solution would be to
lock each collection from which the file is accessible [26].
However, this approach requires finding those collections,
which introduces complex bookkeeping. Instead, we follow
a novel locking protocol where clients do not need to lock
each collection but instead explicitly lock just the object.
Each object has a membership count that clients use to
detect when explicit locking is needed. The service updates
the membership count when it adds or removes an object
from a collection. The transition from hierarchical locks to
explicit is safe because it requires an exclusive lock on both
collections, which prevents concurrent reads.

5.3.5 Integrity

For metadata integrity, Aerie requires clients apply their
metadata updates through the TFS. Before the TFS performs
updates, it validates that these maintain file system invari-
ants, such as ensuring that rename operations do not cause
cycles in the namespace or that files map only allocated ex-
tents.

Naı̈vely having a client synchronously call into the TFS
for each metadata update can negatively impact performance
for metadata-intensive applications. We optimize by observ-
ing that a client can delay communicating metadata updates
to the TFS until such updates need to be visible to other

clients. Clients buffer their updates locally in a log that they
send to a server periodically (similar to delayed writes) or
when they must release a global lock. Locks ensure that
clients do not journal and batch conflicting operations.

Each log entry has a header identifying the operation, the
identifiers of the objects it modifies, and fields the operation
updates. The ability to log operations also enables the TFS
to benefit from work done at the client. For example, when
the client performs a file append that requires allocating new
storage, it logs each extent it pre-allocates and writes the data
to the new extents. The server then only has to verify each
allocation and attach each extent to the file rather than having
to allocate storage, write the data, and attach the extents to
the file.

Validating a client’s updates involves two steps: (i) val-
idate that messages have a valid structure, correspond to
known operations, and that the operation maintains invari-
ants, and (ii) verify that the client holds necessary locks
and permissions. Recent work has shown that file-system in-
tegrity constraints can be enforced using fast local checks on
the data being modified [21].

5.3.6 Crash Recovery

The TFS uses write-ahead logging implemented using a redo
log to atomically perform multiple metadata updates. The
server first logs each metadata update, flushes the log, and
issues a fence to ensure following writes are ordered after
the log writes. It then writes and flushes metadata using
wlflush. In case of a crash, the TFS can recover by replaying
the log of metadata updates. The server does not need to
reacquire locks as updates were written and ordered in the
log with locks held. The server addresses client failures
by revoking locks held by the client. Outstanding metadata
updates a failed client has not yet shipped to the service are
implicitly discarded by the server. This guarantees metadata
invariants but allows client data to be lost.

5.3.7 Free Space Management

The TFS implements a buddy storage allocator to create
extents out of a partition. Clients do not allocate storage
directly through the buddy allocator. Instead, libFS pre-
allocates a pool of 1000 collections, 1000 mFiles, and 1000
extents to avoid contacting the service for create or append
operations. Similarly to WAFL [28], the service maintains
special files that track pre-allocated objects owned by each
client to prevent memory leaks.

6. File Systems Interfaces on Aerie
A major goal of Aerie is to provide a substrate for flex-
ible file-system design. To demonstrate this capability, we
built two file system interfaces. The first, PXFS, shows how
that Aerie has the functionality to implement a POSIX-style
interface for compatibility with existing code. The second,
FlatFS, shows how to optimize the interface for a specific
workload. Each interface provides its own library but both

mFile

Collection =
{ bob ⎯> oid1,

 flat ⎯> oid2 }

{ foo ⎯> oid3,

 bar ⎯> oid4,

 zoo ⎯> oid5}

{ x ⎯> oid6,

 y ⎯> oid7,

 z ⎯> oid8}

oid0

oid1 oid2

PXFS API

FlatFS API

oid5

mFile mFile mFile mFile

oid4 oid6 oid7 oid8oid3

Figure 4: PXFS and FlatFS object layout. Dashed rectangles
around objects show memory protection.

interfaces share the same TFS. Moreover, each interface has
its own code routines in the TFS to manage interface-specific
metadata and synchronization. Such code builds on top of a
common substrate that provides common functionality for
metadata management and synchronization.

6.1 Functionality: PXFS File System

PXFS provides most POSIX semantics for files and directo-
ries, including moving files across directories, retaining ac-
cess to open files after its permissions change or it is un-
linked, and permission checks on the entire path to a file.
It does not provide asynchronous update of timestamps or
predictable file-descriptor numbers. PXFS comprises 2,660
lines of C++ code.

Storage Objects. We implement POSIX storage objects
directly with mFiles and collections as shown in Figure 4.
Files are mFiles with page-sized extents and directories are
collections mapping file names to the object IDs of files and
directories. A root collection holds the root directory. PXFS
creates a volatile shadow object in the client when opening a
file for write to buffer metadata writes before sending them
to the TFS.

Naming. We implement a hierarchical namespace by or-
ganizing the directory collections into a tree. To create a file
within a directory, a client creates an mFile, acquires a write
lock on the directory’s collection, and then inserts the name
and mFile’s object ID. To atomically rename a file between
directories, PXFS acquires write locks on old and new di-
rectory collections, inserts a name-file ID pair in the new
destination and removes the name-file ID from the old col-
lection. Acquiring multiple locks may lead to deadlock, so
PXFS acquires both two locks before the rename operation
and releases them if the TFS revokes a lock. Since acquiring
write locks on collections forces other clients that hold locks
on the collection to send their modifications to the service,
directory updates that happen near the root directory may be
slow.

PXFS supports both absolute and relative path resolution.
Absolute paths are resolved starting at the root by recursively

acquiring a read-only lock on each directory collection until
the name is resolved. Relative paths are resolved starting at
the working directory by recursively acquiring locks up or
down the directory hierarchy to prevent concurrent renames
of directories higher up the tree.

File sharing. PXFS supports concurrent file access. When
a client opens a file, it acquires a lock on the file’s mFile,
which it holds until it closes the file. To allow files to be
unlinked while open, the PXFS TFS maintains a table of
open files for which at least one client had its lock revoked.
Specifically, when another client requests the lock on an
open file, clients with the file open notify the service that the
file is open when releasing the lock. The service then adds
the file to a collection of currently open files. The client can
still obtain explicit locks on the mFile to read or write data,
and when the client terminates or notifies the service that it
has closed the file, the service reclaims the file’s memory.
If a client fails to notify the TFS of an open file, it will be
unable to obtain subsequent locks on the file and thus any
metadata updates will be rejected.

Permission changes are handled similarly: memory pro-
tection is updated synchronously when the permissions
change, but processes with the file open notify the service.
They can then access the file through the service over RPC.
This approach to sharing is similar to Sprite’s support for
consistent read/write sharing [41], which reverts to sending
requests to the server when there are conflicting concurrent
accesses to a file. As POSIX specifies that permissions are
enforced along the path to a file (Windows by default does
not), PXFS updates the protection on all objects underneath
a directory when its permissions change.

Caching. The major optimization in PXFS is a per-client
in-memory cache of path names to speed name resolution.
The cache is organized as a hash table that maps absolute
path names to storage objects, and benefits applications that
suffer from slow lookups due to long absolute paths. Ac-
cesses using relative path names do not use the cache, as the
path names tend to be shorter. A directory path maps to the
directory’s collection, and a file path maps to the file’s mFile
object. Hash table entries are created on demand after re-
solving each path component. Entries are removed when a
directory or a file is unlinked or when the cache grows too
large. Concurrent accesses to the cache by threads within
the same client process are synchronized using a regular
process-private spin lock. The cache is optimized for work-
loads with infrequent sharing between processes: we provide
cache consistency between processes by flushing the entire
cache whenever the client releases a lock or the TFS revokes
a lock (a simple optimization would be to drop only the paths
covered by the lock).

Discussion. The PXFS design illustrates several optimiza-
tion opportunities provided by Aerie. For example, read-
only access to files only communicates with the TFS to ac-

quire locks, and if there are no conflicting accesses, a coarse-
grained lock high in the file system tree suffices. Similarly,
the client can write to file data locally, including writing new
data to files, and only communicates with the service for
metadata changes such as creating or appending to a file.
Batching metadata changes further reduces communication.
The cache design is optimized for non-shared access using
absolute path names.

We found that supporting POSIX semantics increases the
complexity of the implementation. For example, to retain
open files that have been unlinked, clients must communi-
cate with the server to indicate when files are opened or
closed. While we chose to provide this feature to support ap-
plications that depend on it, the performance cost when files
do not need to be cached may be excessive. For example,
many network file systems, such as NFS [44] and AFS [30],
relax consistency semantics.

6.2 Optimization: FlatFS

To demonstrate how targeting a specific application can fur-
ther improve performance by changing the file-system in-
terface and semantics, we designed FlatFS to provide (i) a
simple storage model and (ii) a key-value store interface tar-
geting applications that store many small files in a single di-
rectory, such as an email client or wiki software. Clients have
a shared consistent view to files through a flat key-based
namespace and access files through a simple put/get/erase
interface. In addition, all files have the same permissions. In
contrast to PXFS, FlatFS does not support POSIX seman-
tics, such as hierarchical namespace, unlinking or renaming
open files, and multiple names for a file. FlatFS comprises
340 lines of C++ code.

Storage Objects. FlatFS files are implemented with mFiles
containing a single extent holding the entire file contents,
which optimizes for small files with a known maximum size.
The mFiles store no other metadata, such as permissions or
access time, optimizing for the common case where all files
in a directory have the same permissions. We further opti-
mize for workloads that do not use human-readable names
by replacing the hierarchical namespace with a single col-
lection that maps file names to mFiles, as shown on the right
of Figure 4. No name caching is needed because of the flat
namespace. Adding or removing files, though, are metadata
modifications that eventually go to the TFS.

File sharing. Like PXFS, FlatFS optimizes for scalable
concurrent access to the large, flat key-based namespace
through hierarchical locks. A single lock covers the whole
collection and multiple locks under the single lock cover
the extents that comprise the hash table of the collection
(PXFS uses a single lock for a directory). Each extent’s
lock also covers the files linked from the key-value pairs
stored in the extent. Operations acquire the single collection
lock in intent mode, and then acquire the lock covering the
extent where the key-value pair is stored. Insert and delete

operations acquire a write lock while lookups acquire a read
lock. When an insert or delete causes a rehash of the table,
the rehash operation acquires the single lock covering the
whole collection in write mode.

Discussion. FlatFS and PXFS use the same memory layout
and differ in the policies the interface layer uses to allocate
and synchronize data. An application can use either interface
to access files. To PXFS, the underlying collection appears
as a single global directory, and individual files can be ac-
cessed using the standard open/read/write/close operations
with the usual semantics. However, when an application ac-
cesses files through the FlatFS interface, it benefits from im-
portant performance optimizations. First, the get/put inter-
face opens a file and returns its data in a single operation,
which removes the need to maintain state about open files
in memory. Second, fixed-size files simplify storage alloca-
tion and reduce the amount of metadata. Third, the flat key-
based namespace removes the cost of complex hierarchical
path name resolution. Finally, hierarchical locks enable scal-
able concurrent access to the flat namespace. An alternative
model to FlatFS would be to implement a key-value store
as a single large file. FlatFS, in contrast, enables mutually
distrustful programs to concurrently access and update files,
such as for indexing or backup/restore.

7. Evaluation
We evaluate two main questions about Aerie.
1. Generic POSIX performance: Does a standard file-system

interface based on Aerie perform fast enough to replace
kernel file systems?

2. Optimizations: Can Aerie provide new opportunities for
optimizations exceeding kernel FS performance?

7.1 Methodology

We performed our experiments on a 2.4GHz Intel Xeon
E5645 six-core (twelve thread) machine equipped with
40GB of DRAM running x86-64 Linux kernel 3.2.2.

Storage class memory. We emulate SCM using DRAM.
Separately from our main experiments, we study the sensi-
tivity of Aerie to slow SCM performance using a simple per-
formance model that slows down accesses through software-
created delays (Section 7.4). We use a 24GB memory parti-
tion for all test configurations, as the test workloads do not
require more.

Workloads. We compare Aerie against three Linux kernel-
mode file systems: RamFS, ext3, and ext4. RamFS uses the
VFS page cache and dentry cache as an in-memory file sys-
tem. RamFS does not provide any consistency guarantees
against crashes; thus it serves as a best-performing kernel-
mode file system. To compare against file systems that pro-
vide crash consistency, we use ext3 and ext4. Both ext3 and
ext4 are mature, production-quality file systems optimized
for disk block devices and provide crash consistency using
journaling. We use two mature file systems to better position

Benchmark Latency (µs)
PXFS RamFS ext3 ext4

Sequential read 0.65 0.58 0.65 0.57
Sequential write 1.2 1.2 1.5 1.2
Random read 1.2 1.1 4.2 4.2
Random write 1.1 1.4 3.1 2.5
Open 1.2 1.3 1.6 1.6
Create 5.5 3.0 65.6 81.2
Delete 3.6 2.3 10.5 17.4
Append 3.4 1.1 5.6 3.5

Table 1: Latency of common file system operations. All read-
/write operations use a 4096-byte buffer.

Aerie’s performance. We mount ext3 and ext4 file systems
on a Linux’s RAM disk (brd device driver) that we modi-
fied to perform block writes using streaming writes and flush
blocks using blflush.

We wrote our own microbenchmarks that stress specific
file operations. For application-level workloads, we use a
modified version of FileBench [2] that calls through libFS
rather than system calls. Unless otherwise specified, work-
loads are single threaded. For all our experiments we report
averages of at least five runs.

7.2 Generic POSIX Performance

A prime motivation for Aerie is that direct access to stor-
age can enable optimizations that make user-mode file sys-
tems faster than ones in the kernel. However, for programs
that do not benefit from optimized interfaces, performance
cannot suffer compared to standard file-system designs. We
show that despite higher communication and synchroniza-
tion costs due to the TFS, Aerie can deliver POSIX perfor-
mance comparable to kernel-mode file systems.

7.2.1 Microbenchmark Performance

We evaluate the latency of common POSIX file-system op-
erations. The sequential tests operate on a 1GB file in 4KB
blocks, and the random workloads randomly access 100MB
out of a 1GB file in 4KB blocks. Open/create/delete are mea-
sured by opening/creating/removing 1024 4KB files. Be-
cause Aerie batches updates, we report average latency. The
kernel-mode file systems operate with warm inode and den-
try caches.

Table 1 shows the latency of common file system opera-
tions on PXFS, RamFS, ext3, and ext4. As expected RamFS
performs consistently better than ext3 and ext4. Compared
with ext4 in the kernel, PXFS is between 2% to 90% faster
(average 47% faster) for all operations except sequential
reads. ext4 benefits from variable length extents for storing
file data that improve sequential access performance. Open
is faster for PXFS because ext4 has to bring the file into the
inode cache. PXFS benefits by not calling into the kernel,
which helps random reads, and by batching metadata up-
dates for create, delete, and append. PXFS compares simi-
larly to ext3.

Benchmark Latency (µs)
PXFS PXFS-NNC RamFS ext3 ext4

Fileserver 16.8 (17.9) 24.3 13.1 30.3 18.7
Webserver 3.0 (3.3) 5.5 3.2 3.3 3.3
Webproxy 3.5 (3.5) 4.0 3.1 4.9 4.5

Table 2: Average latency per workload operation. PXFS-NNC
is PXFS with no name caching. Numbers in parentheses show the
95-percentile latency.

PXFS performs close to RamFS, which runs in the ker-
nel but provides no crash consistency guarantees. RamFS is
between 8% to 67% faster (average 23% faster) for all op-
erations except open and random writes which are 8% and
27% slower. PXFS is faster for open as it benefits from ac-
cessing metadata directly without invoking the kernel. How-
ever, PXFS provides flexibility of interface implementations,
while RamFS provides only the POSIX interface. In con-
trast, existing solutions supporting flexible implementations
such as FUSE [48], are more than 10x slower than kernel file
systems.

We separately measure the cost of changing file permis-
sions. The TFS asks the SCM manager to change memory
protection on pages storing the file with the scm mprotect -

extent. If a page has been referenced and is in a page table,
the SCM manager shoots down the page from the TLB and
invalidates its page table entries. Changing protection takes
3.3µs per page that has been referenced, most of which is
TLB shootdown time. For large files, it may be faster to flush
the entire TLB.

7.2.2 Application Workload Performance

We evaluate application-level performance with three File-
Bench profiles (Fileserver, Webserver, and Webproxy) to ex-
ercise different aspects of the file system. The Fileserver
workload emulates file-server activity and performs se-
quences of creates, deletes, appends, reads, and writes.
The Webserver workload performs sequences of open/read-
/close operations on multiple files and appends to a log
file. Webproxy performs sequences of create/write/close,
open/read/close, and delete operations on multiple files in
a single directory plus appends to a log file. Each workload
is broken up into individual iterations, and we report the
latency of an iteration. The Fileserver and Webserver work-
loads use 10,000 files, mean directory width of 20, and a
1MB I/O size. The mean file size was 128KB for the File-
server and 16KB for the Webserver. The Webproxy bench-
mark was run with 1000 files, mean directory width of 1500,
mean file size of 16KB, and 1MB I/O size.

Table 2 shows the average latency to complete one work-
load operation. The table includes results for both PXFS
with name caching and PXFS with no name caching (PXFS-
NNC). As we further discuss in Section 7.3.1, name caching
improves PXFS performance considerably. Compared to
RamFS, PXFS with name caching is only 18% (on av-
erage) slower for Fileserver and Webproxy, but matches

the performance of Webserver despite communication with
the TFS. The microbenchmark results in Table 1 explains
much of these results. The Fileserver workload has a large
fraction of file creates, deletes, and appends, which are
metadata-update intensive and are therefore faster on RamFS
because of no crash consistency. Additionally, the File-
server workload uses larger writes (128KB) than the mi-
crobenchmarks (4KB), which amortize the cost of entering
the kernel and lead to 20% better performance than PXFS.
Webproxy on PXFS is slower than on RamFS for similar
reasons. Metadata-update operations are also abundant in
the Webproxy workload but their cost on PXFS is offset
by the performance benefit of direct access to small files
(16KB). Webserver is a read-mostly workload (opens/read-
/close) to small files. PXFS performs slightly better (6%
better) than RamFS because of the lower latency to open a
file (8% lower) due to direct access to metadata.

Compared to ext3 and ext4, which in contrast to RamFS
provide crash consistency, PXFS is between 10% and 91%
faster than ext3 and between 10% and 29% faster than ext4.
Specifically, PXFS improves latency by 79% and 40% for
for the Fileserver and Webproxy workloads respectively run-
ning on ext3. Both workloads have a large fraction of file
creates and deletes, writes, and random access, for which
PXFS is substantially faster than ext3. For Fileserver, the
large performance improvement comes from PXFS’s 102%
better performance for writes and 191% faster deletes. The
Webserver workload sees less benefit on PXFS as it is al-
most entirely sequential data reads, which perform similarly
on PXFS and ext3, and offset the performance benefit of
PXFS’s faster file opens (22% faster).

Compared to ext4, PXFS achieves 28% lower latency for
the Webproxy workload, 12% lower latency for the File-
server workload, and 10% lower latency for the Webserver
workload. The benefit is lower for Fileserver as ext4’s ex-
tent file layout improves file write performance by 55%
over ext3, which helps bridge the performance gap between
PXFS and ext3. Since PXFS uses a radix tree of blocks,
which is similar to ext3’s tree of indirect blocks, we ex-
pect that an extent file layout could similarly improve per-
formance of PXFS.

A large benefit for PXFS comes from batching, which is
not possible in ext3 or ext4 because the kernel releases locks
before returning to usermode. We found the average opti-
mum batch size for our workloads to be 8MB of metadata.
Despite batching, the latency results in Table 2, show that
latency is consistently low with 95-percentile latency only
slightly higher than average latency.

7.2.3 Client and Server Scalability

The preceding results evaluated single-threaded perfor-
mance. First, we evaluate the effect of having multiple
threads in the client. Figure 5 shows throughput (workload
operations per second) for our three workloads as we vary
the number of threads in a single client process. For File-

Benchmark Throughput (ops/s)
1 2 4 6

Fileserver (FS) 59,440 90,594 170,560 213,941
FS+Webproxy (WP) N/A 273,414 412,647 599,447
FS+WP (FlatFS) N/A 349,011 660,549 921,816

Table 3: Throughput performance of a multiprogrammed
workload with increasing client processes.

server, PXFS achieves better scalability than ext3 and nearly
doubles throughput when going from 1 to 4 threads. How-
ever, we find that PXFS does not scale beyond 4 threads due
to contention in the storage allocator. . For Webserver, PXFS
achieves almost linear scalability similarly to the kernel-
mode file systems. For Webproxy, PXFS throughput does
not increase because of single-lock bottlenecks. Specifically,
we see contention (22% of total runtime) for the lock cov-
ering the single directory. With extra effort, both locks can
be split into multiple fine-grained locks to remove this con-
tention.

We evaluate the scalability of the TFS by running two
multiprogrammed workloads: (1) multiple single-threaded
Fileserver instances, and (2) Fileserver+Webproxy both us-
ing PXFS, and (3) Fileserver using PXFS + Webproxy using
FlatFS. The last two comprise multiple number of Fileserver
and Webproxy instances. We do not consider Webserver; as
a read-mostly workload it does not put much pressure on the
server. We configured each client to operate in a different
directory to avoid contention between clients due to locking.

Table 3 shows the aggregate throughput of both tests
and suggests that both workloads can scale well (about 3x
speedup for 4 clients). This is because multiple threads in
the TFS can perform metadata updates concurrently under
different parts of the namespace due to hierarchical locks.
The TFS CPU utilization increases from 20% for 1 client to
83% for 4 clients.

7.3 Optimization Benefits

We finally evaluate the key premise of Aerie: a library file-
system implementation enables new performance optimiza-
tions.

7.3.1 Path-Name Caching

The major optimization in PXFS is a per-client in-memory
cache of path names to speed name resolution. This cache
is similar to the dentry cache in the kernel, but replicated
in each process. This cache benefits workloads with little
sharing, as the cache is flushed when multiple processes
open the same files.

By comparing the performance of PXFS with name
caching and PXFS with no name caching (PXFS-NNC),
which is shown in Table 2 and Figure 5, we see that the
path-name cache is quite effective for improving PXFS per-
formance. Specifically, name caching helped improve per-
formance by up to 44% for Fileserver, 121% for Webserver,
and 190% for Webproxy. The benefit is higher for Webserver

0

40

80

120

160

200

0 2 4 6 8 10 12

Th
ro

u
gh

p
u

t
(o

p
s/

s)

Th
o

u
sa

n
d

s

Threads - FileServer

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12

Th
ro

u
gh

p
u

t
(o

p
s/

s)

Th
o

u
sa

n
d

s

Threads - WebServer

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Th
ro

u
gh

p
u

t
(o

p
s/

s)

Th
o

u
sa

n
d

s

Threads - WebProxy

PXFS

PXFS-NNC

RamFS

ext3

ext4

FlatFS

Figure 5: Throughput (operations per second) for 1-10 threads. PXFS-NNC is PXFS with no name caching.

and Webproxy as files are small, and therefore name resolu-
tion when opening a file is relatively more expensive than it
is for larger files in Fileserver.

7.3.2 Workload-Specific Performance

A key motivator for Aerie is the ability to create workload-
specific file system interfaces. We measure the performance
of FlatFS with a get/put interface in a single directory with
the Webproxy workload, whose usage fits the FlatFS inter-
face. We modified the Webproxy workload by converting
the create-write-close file sequence to a put operation, open-
read-close file to a get operation and delete to an erase oper-
ation. We convert the append to a get/modify/put sequence.

The right side of Figure 5 shows the performance of
FlatFS for the Webproxy workload. For a single thread,
FlatFS is 45% faster than RamFS and 62% faster than PXFS.
With five threads, it is 20% faster than RamFS and 263%
faster than PXFS. Compared to the kernel-mode file sys-
tems that provide crash consistency (i.e., ext3 and ext4),
PXFS is between 53% and 109% faster. With a single thread,
the biggest benefit comes from using a get/put interface in-
stead of open/read/write/close. With the standard interface,
PXFS must create a temporary in-memory object represent-
ing an open file and record the file offset on every read. With
get/put, FlatFS can locate the file in memory and copy it
directly to an application buffer. With multiple threads, the
performance benefit comes from using multiple locks within
a single directory, which alleviates the scalability limitations
of PXFS. In addition, data access is faster with FlatFS be-
cause it stores files in a single extent rather than using a radix
tree of multiple extents. Thus, getting or putting data is a sin-
gle memcpy operation.

7.4 Sensitivity to Memory Performance

As discussed in Section 2 there are several competing SCM
technologies each with different performance characteris-
tics. As the specic design of the memory system can have a
great impact on performance [36], and CPU prefetching and
caching can hide much of the cost of accessing SCM [14],
we perform a series of experiments to study sensitivity to the
most important aspect of performance: slow writes.

We emulate slow SCM using DRAM by introducing an
extra configurable delay when writing to SCM. For the li-
brary file systems, we introduce the delays through the rou-
tines that write to SCM both at the client and server. For the

1

10

100

1,000

0 ns 100 ns 1000 ns 10000 ns

Th
ro

u
gh

p
u

t
(o

p
s/

s)

Th
o

u
sa

n
d

s

Fileserver - PXFS

Fileserver - ext4

WebProxy - PXFS

WebProxy - ext4

WebProxy - FlatFS

Figure 6: Throughput performance for different memory
write latencies. Horizontal axis shows latency over existing DRAM
latency.

kernel file systems, we introduce delays through the RAM
disk driver when writing a block. We create delays using a
software spin loop that uses the x86 RDTSCP instruction
to read the processor timestamp counter and spins until the
counter reaches the intended delay.

Figure 6 presents throughput performance for different
memory write latencies for 8 threads. For brevity, we omit
the Webserver workload, which is read-intensive and thus re-
mains largely insensitive to write latency. We make two main
observations. First, the performance gap between the library
file system PXFS and kernel-mode ext4 grows as write la-
tency to SCM increases, thus suggesting that longer write
latencies favor coarse-grain block access over fine-grain byte
addressable access. Second, interface specialization through
FlatFS is less beneficial with longer write latencies as the
storage access cost becomes relatively more significant than
the software cost.

8. Related Work
Our work touches and benefits from a wide scope of previous
work. Below we discuss and draw connections to classes of
previous work we feel are most closely related.

File systems for SCM. Prior to the work discussed in
Section 2, earlier projects investigated the integration of
storage-class memory into file systems for use as persistent
write buffers to reduce the latency of writing data [29], or to
hold frequently changing metadata and small files [39, 54].
The fundamental file system and storage architecture are left
unchanged.

Application performance and flexibility. Achieving per-
formance improvements by matching application needs to
storage-system design has been a recurring theme in the
systems community. For example, Google’s GFS optimizes
for web data [22] and Facebook’s Haystack optimizes for
images [9]. Exokernel [33] and Nemesis [6] have explored
exposing storage to user-mode for application performance
and flexibility. However, they still maintain protection of the
block device within the kernel, so storage access still re-
quires invoking a kernel-mode device driver. Thus, accessing
metadata still requires expensive calls into the kernel.

Distributed file systems. Our architecture has been influ-
enced by distributed file system designs and naturally bears
many similarities to them. Coda [34], Farsite [4] and Ivy [40]
distribute file system functionality to untrusted clients, and
reintegrate clients’ changes to the file system by verifying
and replaying operations previously written to a log. Previ-
ous work on distributed file systems provided direct access to
block storage over the network to improve performance and
scalability [15, 23, 37, 50]. Aerie applies similar techniques
to a local setting and must work with the fixed memory inter-
face rather than a flexible software interface to storage. Sim-
ilar to FlatFS, many distributed file systems relax file system
consistency semantics for improved performance [30, 44].

Fast networking. Previous work on user-mode network-
ing [53] had recognized the need for direct protected ac-
cess to fast network devices to avoid software-layering over-
heads. On-going work has proposed unifying the I/O stack
for fast networking and fast SCM [51].

9. Conclusion
New storage technologies promise high-speed access to stor-
age directly from user mode. We have presented a decen-
tralized file-system architecture that represents a new design
targeting SCM, and reduces the kernel role to just multiplex-
ing physical memory. Applications can achieve high perfor-
mance by optimizing the file-system interface for application
needs without changes to complex kernel code. We showed
that we can still implement POSIX with good performance
and that further performance improvements can come from
customizing the interface to the workload.

Acknowledgments
We thank David DeWitt for his support in pursuing this
work. We thank Andrea Arpaci-Dusseau, Kim Keeton,
Harumi Kuno, and Brad Morrey for their feedback on earlier
drafts of this paper. We also thank our anonymous review-
ers, and our shepherd, Steven Hand, who helped us improve
this paper through reviews and suggestions. This work was
supported in part by a grant from the Microsoft Jim Gray
Systems Lab, and in part by the National Science Founda-
tion under grants CNS-0915363, CNS-1218485, and CNS-
0834473.

References
[1] Fans of the OS Plan 9 from Bell Labs: unlink/re-

move/whatever. http://blog.gmane.org/gmane.os.

plan9.general/month=20020801/page=14, Aug. 2002.

[2] Filebench benchmark. http://sourceforge.net/apps/

mediawiki/filebench, 2011.

[3] PMFS: A file system for persistent memory. https:

//github.com/linux-pmfs/pmfs/blob/master/

Documentation/filesystems/pmfs.txt, 2013.

[4] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. Farsite: federated, available, and reliable storage
for an incompletely trusted environment. In OSDI 5, Dec.
2002.

[5] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
five-year study of file-system metadata. Trans. Storage, 3(3),
Oct. 2007.

[6] P. R. Barham. A fresh approach to file system quality of
service. In NOSSDAV, May 1997.

[7] A. Basu, J. Gandhi, M. M. Swift, M. D. Hill, and J. Chang.
Efficient virtual memory for big memory servers. In ISCA 40,
June 2013.

[8] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: a new OS architecture for scalable multicore sys-
tems. In SOSP 22, Oct. 2009.

[9] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding
a needle in Haystack: Facebook’s photo storage. In OSDI 9,
Oct. 2010.

[10] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn,
and S. Swanson. Providing safe, user space access to fast,
solid state disks. In ASPLOS 17, Mar. 2012.

[11] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska.
Sharing and protection in a single-address-space operating
system. ACM Transactions on Computer Systems (TOCS),
12(4):271–307, Nov. 1994.

[12] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swan-
son. From ARIES to MARS: Transaction support for next-
generation, solid-state drives. In SOSP 24, Nov. 2013.

[13] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. NV-Heaps: making per-
sistent objects fast and safe with next-generation, non-volatile
memories. In ASPLOS 16, Mar. 2011.

[14] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through byte-
addressable, persistent memory. In SOSP 22, Oct. 2009.

[15] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck,
T. Talpey, and M. Wittle. The direct access file system. In
FAST 2, Mar. 2003.

[16] Dovecot. Mailbox formats. http://wiki.dovecot.org/

MailboxFormat/.

[17] U. Drepper. Futexes are tricky. www.akkadia.org/

drepper/futex.pdf, 2005.

[18] L. A. Eisner, T. Mollov, and S. Swanson. Quill: Exploiting
fast non-volatile memory by transparently bypassing the file
system. Technical report, UCSD, 2013.

[19] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database sys-
tem. Communications of ACM, 19(11):624–633, Nov. 1976.

[20] R. F. Freitas and W. W. Wilcke. Storage-class memory: the
next storage system technology. IBM Journal of Research and
Development, 52(4):439–447, 2008.

[21] D. Fryer, K. Sun, R. Mahmood, T. Cheng, S. Benjamin,
A. Goel, and A. D. Brown. Recon: Verifying file system con-
sistency at runtime. In FAST 10, Feb. 2012.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In SOSP 19, Oct. 2003.

[23] G. A. Gibson, D. Rochberg, J. Zelenka, D. F. . Nagle,
K. Amiri, F. W. Chang, E. M. Feinberg, H. G. off, C. Lee,
B. Ozceri, and E. Riedel. File server scaling with network-
attached secure disks. In SIGMETRICS 1997, June 1997.

[24] E. Giles, K. Doshi, and P. Varman. Bridging the programming
gap between persistent and volatile memory using WrAP. In
CF’13, May 2013.

[25] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency. In SOSP
12, Dec. 1989.

[26] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.
Granularity of locks and degrees of consistency in a shared
data base. In Readings in database systems, pages 94–121.
Morgan Kaufmann Publishers Inc., 1988.

[27] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A new programming interface for scalable network
I/O. In OSDI 10, Oct. 2012.

[28] D. Hitz, J. Lau, and M. Malcolm. File system design for an
NFS file server appliance. In USENIX ATC Winter, Dec. 1994.

[29] D. Hitz, J. Lau, and M. Malcolm. File system design for
an NFS file server appliance. Technical Report TR 3002,
NetApp, 2005.

[30] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system. ACM Transac-
tions on Computer Systems, 6(1):51–81, Feb. 1988.

[31] Y. Huai. Spin-transfer torque MRAM (STT-MRAM): Chal-
lenges and prospects. AAPPS Bulletin, 18(6):33–40, Dec.
2008.

[32] A. M. Joshi. Adaptive locking strategies in a multi-node data
sharing environment. In VLDB 17, Sept. 1991.

[33] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie. Application performance and flexibility
on exokernel systems. In SOSP 16, Oct. 1997.

[34] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system. ACM Transactions on Computer
Systems, 10:3–25, Feb. 1992.

[35] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architecture
support for single address space operating systems. In ASP-
LOS 5, Oct. 1992.

[36] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase-change memory as a scalable DRAM alternative. In
ISCA 36, June 2007.

[37] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks.
In ASPLOS 7, Oct. 1996.

[38] D. Mazières. A toolkit for user-level file systems. In USENIX
ATC, June 2001.

[39] E. Miller, S. Brandt, and D. Long. HeRMES: High-
performance reliable MRAM-enabled storage. In HotOS 8,
May 2001.

[40] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: a
read/write peer-to-peer file system. In OSDI 5, Dec. 2002.

[41] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson,
and B. B. Welch. The Sprite network operating system. IEEE
Computer, 21:23–36, Feb. 1988.

[42] M. K. Qureshi, J. K. Michele, Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and security of
PCM-Based. main memory with start-gap wear leveling. In
MICRO 42, Dec. 2009.

[43] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron,
D. Black, W. Bolosky, and J. Chew. Machine-independent
virtual memory management for paged uniprocessor and mul-
tiprocessor architectures. In ASPLOS 2, Oct. 1987.

[44] R. Sandberg. The Sun network file system: Design, imple-
mentation and experience. In USENIX ATC, June 1986.

[45] M. D. Schroeder. Cooperation of Mutually Suspicious Sub-
systems in a Computer Utility. PhD thesis, Massachusetts In-
stitute of Technology, 1972.

[46] L. Soares and M. Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In OSDI 9, Oct.
2010.

[47] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams.
The missing memristor found. Nature, 453:80–83, 2008.

[48] M. Szeredi. Fuse: Filesystem in userspace. http://fuse.

sourceforge.net, 2005.

[49] V. Technology. ArxCis-NV (TM): Non-Volatile DIMM.
http://www.vikingtechnology.com/arxcis-nv, 2014.

[50] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
scalable distributed file system. In SOSP 16, Oct. 1997.

[51] A. Trivedi, P. Stuedi, B. Metzler, R. Pletka, B. G. Fitch, and
T. R. Gross. Unified high-performance I/O: one stack to rule
them all. In HotOS 14, May 2013.

[52] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In ASPLOS 16, Mar. 2011.

[53] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a
user-level network interface for parallel and distributed com-
puting. In SOSP 15, Dec. 1995.

[54] A.-I. A. Wang, P. Reiher, G. J. Popek, and G. H. Kuenning.
Conquest: Better performance through a disk/persistent-ram
hybrid file system. In USENIX ATC, June 2002.

[55] X. Wu and A. L. N. Reddy. SCMFS: a file system for storage
class memory. In SC’11, Nov. 2011.

