
From application requests to Virtual IOPs:
Provisioned key-value storage with Libra

David Shue∗ and Michael J. Freedman
Princeton University

Abstract
Achieving predictable performance in shared cloud stor-

age services is hard. Tenants want reservations in terms of
system-wide application-level throughput, but the provider
must ultimately deal with low-level IO resources at each stor-
age node where contention arises. Such a guarantee has thus
proven elusive, due to the complexities inherent to modern
storage stacks: non-uniform IO amplification, unpredictable
IO interference, and non-linear IO performance.

This paper presents Libra, a local IO scheduling framework
designed for a shared SSD-backed key-value storage system.
Libra guarantees per-tenant application-request throughput
while achieving high utilization. To accomplish this, Libra
leverages two techniques. First, Libra tracks the IO resource
consumption of a tenant’s application-level requests across
complex storage stack interactions, down to low-level IO
operations. This allows Libra to allocate per-tenant IO re-
sources for achieving app-request reservations based on their
dynamic IO usage profile. Second, Libra uses a disk-IO cost
model based on virtual IO operations (VOP) that captures
the non-linear relationship between SSD IO bandwidth and
IO operation (IOP) throughput. Using VOPs, Libra can both
account for the true cost of an IOP and determine the amount
of provisionable IO resources available under IO interference.

An evaluation shows that Libra, when applied to a
LevelDB-based prototype with SSD-backed storage, satis-
fies tenant app-request reservations and achieves accurate
low-level VOP allocations over a range of workloads, while
still supporting high utilization.

1. Introduction
The rapid adoption of cloud storage services, e.g., key-
value stores [5], block storage volumes [3, 27], and SQL
databases [2, 15], has escalated the challenge of resource shar-
ing. By adopting these services, cloud tenants leverage the
expertise of the service provider in building, managing, and

∗Current affiliation: Google, Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
owner/author(s).
EuroSys 2014, April 13–16 2014, Amsterdam, Netherlands
ACM 978-1-4503-2704-6/14/04.
http://dx.doi.org/10.1145/2592798.2592823

provisioning the common storage platform, while providers
reap the benefits of statistical multiplexing for higher margins
and lower costs. However, because these multi-tenant services
rely on shared infrastructure, resource contention arises wher-
ever tenant workloads overlap on the same physical substrate.
This contention can degrade and destabilize throughput, lead-
ing to highly variable application performance.

For tenants running critical workloads that require pre-
dictable performance , provisioned (that is, guaranteed) re-
source allocation is essential. While provisioning low-level
IO resources such as IO operations (IOP) is simpler for the
provider, it requires the often opaque and onerous task of
IO resource estimation on the part of the tenant. Since ten-
ants only see the high-level requests they issue to the storage
service, not the underlying IO operations, they must fine-
tune their workloads to meet the provisioned resource con-
straints. Instead, tenants prefer to reserve resources in terms
of application-level request (app-request) throughput, such
as key-value GET/s rather than IOP/s, which allows them to
specify exactly what they need from the storage system.

This paper describes Libra, an IO resource scheduling
framework for provisioning app-request throughput in a multi-
tenant key-value storage system. Libra provides the crucial
per-node substrate for achieving system-wide tenant through-
put reservations specified in terms of size-normalized (1KB)
GET and PUT requests per second. At each storage node,
Libra provisions low-level IO resource allocations to sat-
isfy each tenant’s local throughput reservation by tracking
application request cost and mediating tenant IO resource
consumption. These local reservations, which are computed
by higher-level policies (e.g., Pisces [30]), combine together
to satisfy the tenants’ system-wide throughput reservation.
Libra leverages high-throughput, low-latency SSD storage
to provide predictable IO performance for disk-bound work-
loads, while preserving high utilization.

Although reservations in terms of application-level re-
quests, rather than low-level IO, present a simple and accessi-
ble resource interface to the tenant, they introduce new tech-
nical challenges for the provider. In particular, the provider
must address three essential questions: (i) how much low-
level disk-IO does a tenant’s GET/PUT request, and hence its
reservation, generate, (ii) what is the true IO resource capacity
of the underlying SSD media, and most crucially (iii) how
should the system schedule and account for the cost of indi-
vidual IO operations to enforce tenant IO allocations? The

difficulty in answering these questions lies in the non-linearity
and complexity of modern storage stacks:

• IO operations are subject to amplification: In modern
storage engines, a single application-level request can
trigger multiple IO operations (e.g., a 1KB PUT written
once to a log and then to a data table) which can vary
non-uniformly with tenant workload distribution (e.g.,
by the GET/PUT ratio and request size).

• IO throughput degrades under interference: Disk-level
IO interference between reads and writes can cause se-
vere degradation in IOP/s and IO bandwidth, which also
varies unpredictably with tenant op size and workload.

• IO cost varies non-linearly with operation size: Even
for pure read or write workloads, IOP/s and bandwidth
vary non-linearly with operation size, shifting bottle-
necks from the controller (IOP) to the data channel
(bandwidth) as op sizes increase.

To our knowledge, Libra is the first multi-tenant IO sched-
uler to provide app-request throughput reservations while
preserving high-utilization for SSD-based key-value storage.
Existing approaches typically use hard rate limits [3, 5] to
provision tenant app-request reservations. While simple and
effective for performance isolation, a significant portion of
IO resources may lie fallow if tenant demand drops below
the reserved request rates. This is untenable for cloud storage
providers who must capitalize on every bit of available per-
formance due to competitive pricing pressure. Libra uses two
key techniques to combat the complexities of provisioning
app-request reservations in terms of low-level IO resources.

(1) Track app-request IO cost. Libra marks tenant IO
operations by their associated application request across all
foreground and background operations in the storage stack.
In this way, Libra can attribute secondary IO costs back to the
originating request type and track each tenant’s IO resource
consumption profile. Libra uses these profiles to provision
the IO resource allocations necessary to achieve the tenant
app-request reservations according to their amplified IO costs.

(2) Account for “Virtual” IO operations. Libra charges
IO resources in terms of virtual IO operations (VOP) using
an IO cost model that captures the non-linear performance
characteristics of the underlying SSD media. This allows
Libra to accurately account for tenant IO over a wide range of
IOP sizes and enforce low-level tenant IO resource allocations.
To handle the effects of IO interference, we systematically
examine how IO throughput capacity (VOP/s) varies under
conflicting workloads, e.g., read vs. write requests, large
vs. small ops. Libra uses this data to construct a simple IO
capacity model that safely (under)estimates the amount of
provisionable IO resources available.

Using these techniques, Libra is able to provision at least
half of the maximum (i.e., interference-free) SSD IO through-
put to achieve the tenants’ per-node application-level through-
put reservations in our LevelDB-based [20] prototype storage

node. Libra achieves these reservations over a wide range of
workloads including intermixed reads, writes, and varying op
sizes, with highly variable interference effects. Although up
to half the IO resources may be left unprovisioned, Libra still
preserves high utilization by allowing tenants to share any
excess IO throughput in a work-conserving manner. Under
most realistic workloads that exhibit a mix of operation sizes
and types, this provisionable resource gap drops to 16% or
less. Central to Libra’s ability to accurately provision IO
resources is our IO cost model. This model allows Libra
to achieve more accurate allocations—0.98 min-max ratio
(MMR) across equal-allocation tenants—compared to other
extant IO cost models (< 0.84 MMR), per our later evaluation.

While we specifically address provisioned key-value stor-
age in this paper, we believe that Libra’s app-request resource
tracking, IO capacity threshold, and low-level IO cost model,
should generalize to other shared storage services with syn-
chronous disk workloads as well.

2. Provisioned Key-Value Storage
Large-scale key-value storage services commonly employ
a shared-nothing architecture, depicted on the left side of
Figure 1. For scalability and fault tolerance, tenant data is di-
vided into disjoint (replicated) partitions and dispersed across
storage nodes. Clients (or intermediate request routers) route
tenant object requests to local nodes based on the partition
mapping and, if enabled, a replica-selection policy.

2.1 Provisioning system-wide throughput
To achieve system-wide request throughput reservations, the
storage system must first map tenant partitions to storage
nodes that can accommodate the aggregate demand. Then,
the system should subdivide each tenant’s global reservation
among the local nodes based on the request load at each
node. Commercial systems like DynamoDB often push this
burden to the tenant: they require uniform demand across
all partitions, which allows the provider to distribute local
tenant reservations uniformly across the storage nodes. On the
other hand, research systems like Pisces [30] employ dynamic
policies for placing partitions, distributing local reservations,
and balancing partition demand to support arbitrary tenant
workloads that may vary over time.

However, the effectiveness of such system-wide policies
ultimately depend on how well the low-level mechanisms at
each storage node enforce local app-request reservations. If
individual nodes fail to arbitrate between disparate tenants’
requests for objects in collocated partitions, both local and
system-wide tenant reservations would suffer. Thus, in Li-
bra, we turn our attention from the system-wide reservation
problem, which has been addressed by prior work [30, 33],
to focus on provisioning disk (SSD) IO resources to achieve
tenant app-request reservations for disk-bound workloads at
each local node. We first introduce the design of Libra, then

2

Tenant A Tenant B

Node 1

VM VM VM VM VM VM

6

Node 2

GET Object5

ReservationA ReservationB

Request Router
G

ET PU
T

Data Partitions Local Reservations

Key-Value
Protocol/Cache

Persistence Engine

Libra IO Scheduler

Physical Disk

StoreRetrieve

Read Write

IOP

GET PUT DEL

Tenant
Resources

IO Task

allocate
consum

e

Resource
Policy

track

CPU
Scheduler

Disk IO
Scheduler

provision

G
ET PU

TGET
Read

analyze
Persistence Engine

Physical Disk

Shared Key-Value Storage Storage Node Stack Libra IO Scheduler

Figure 1: Tenant data is split into partitions and distributed across the key-value storage system. Each storage node
runs a storage stack to store objects and serve requests. Libra provisions low-level IO resource allocations and schedules
tenant IO to achieve per-node tenant app-request reservations.

describe the confounding factors inherent to storage stacks
and how Libra addresses each of these challenges.

2.2 The Libra IO scheduling framework
Although key-value storage systems typically expose a simple
request API to their clients (e.g., GET or PUT), the internal
architecture of each storage node is layered and complex,
as shown in the middle of Figure 1. When a tenant request
arrives at the storage node, the protocol layer reads and parses
it from the network. If the requested object is cached, it is
returned immediately for a GET request, while PUTs and
cache misses continue on to the persistence engine, which
manages the on-disk data layout for updates and retrievals.
Internally, the persistence engine issues an often complex
series of IO requests to handle the application-level request.
The IO scheduler submits these IO requests to the storage
device (SSD) which executes the IO operations, percolating
results (e.g., object data for reads) back up the stack.

As shown on the right side of Figure 1, Libra is situated
below the persistence engine to mediate low-level IO opera-
tions before they reach the underlying SSD. Libra manages
SSDs based on their measured IO throughput capacity and the
cost model associated with their IO operations. To satisfy the
tenant app-request reservations, the Libra resource policy pro-
visions IO resource allocations based on the observed IO cost
of a tenant’s requests. Should tenant workload fluctuations
cause the cost of locally allocated IO operations to exceed
the IO throughput, Libra can signal higher-level policies to
migrate partitions and redistribute local reservations.

When the persistence engine issues IO tasks (reads and
writes) to the Libra scheduler, each low-level IO task is tagged
with the resource principal (tenant) and originating applica-

tion request (GET or PUT). In each scheduling round, Libra
consumes IO resources for each tenant IO task according to
the underlying cost model. Libra interleaves IO operations
from different tenants in a deficit round robin [29] fashion,
scheduling tasks until all tenants have either run out of work or
exhausted their IO allocation, which starts a new round. The
application request tag allows Libra to track the consumed
resources for each request and build a tenant resource profile.
In the background, Libra’s resource policy analyzes these
resource profiles to determine the necessary IO resources and
provisions each tenant’s resource allocation. Recall that the
local app-request reservations handled by the resource policy
are specified in normalized (1KB) GET and PUT requests
and are set by higher level policies.

3. The Problem of Predictability
In this section, we examine the nature of IO amplification, IO
interference, and non-linear IO performance in detail.

3.1 Non-uniform IO amplification
The cost of an application request in IO resources depends
largely on the persistence engine’s data format and the number
of IO operations needed to satisfy it. Modern storage engines
issue multiple IO operations to handle both GETs (reads) and
PUTs (writes), with some executed asynchronously. For in-
stance, most engines employ an append-only write-ahead log
(WAL) to sequentialize writes and reduce request latency. Al-
though the WAL ensures reliable failure recovery, sequential
scans are prohibitively expensive for servicing normal reads.
Eventually, the storage engine must re-write (FLUSH) the
object data in a more efficient, indexed format for retrieval.

3

 0

 5

 10

 15

 20

 25

 30

1KB
4KB

8KB
16KB

32KB
64KB

128KB
32/128KB

Vi
rtu

al
 IO

P
(k

op
/s

)

GET/PUT Request Size

GET read IO

PUT write IO

FLUSH write IO

FLUSH read IO

COMPACT write IO

COMPACT read IO

Figure 2: App-request IO consumption varies non-
uniformly with tenant workload.

Storage engines with immutable data formats, such as log-
structured merge (LSM) trees [7, 10, 20, 25], do not allow
in-place writes and instead use background processes to cull
stale objects and merge data indices. These COMPACT oper-
ations entail (potentially many) sequential reads and writes.
Compaction cost and frequency are non-uniform and depend
heavily on the storage workload. Writes to objects distributed
uniformly over a tenant’s key space experience few over-
writes, resulting in less compaction data savings (and thus
more write IO) than compacting data from a highly skewed
distribution with frequent overwrites.

App-request reads can be equally complex. Indexed storage
engines require one or more page-sized (e.g., 4KB) block
reads to find the key index, and another read to load the object
data block(s). In-place engines like InnoDB that modify
objects in existing data files require extensive file locking
to handle concurrent reads and writes, but do not consume
additional IO. Immutable formats, on the other hand, may
require additional (indexed) lookups depending on the number
of immutable indexed data files in the tree and their key ranges.
For a given lookup key, any data file with an overlapping key
range is a potential search candidate.

To illustrate IO amplification, we measured the app-request
IO cost for a tenant with a 50:50 GET/PUT workload, spread
over a range of request sizes, accessing our LevelDB-based
storage prototype which implements an LSM tree. All keys
are sampled uniformly over the keyspace. Here, IO cost is
measured in Virtual IOPs (VOP), Libra’s unified metric for IO
cost and throughput, which we define later in §4.3. Figure 2
shows the breakdown of app-request IO consumption. At
small request sizes, PUT requests consume the majority of
IO, since small objects are individually appended to the WAL
at a high IO cost-per-byte. As request sizes increase, the PUT
cost decreases, in keeping with the lower cost-per-byte of
larger IOPs. FLUSH costs remain relatively constant since
the entire in-memory data set is written to disk sequentially
at a single IOP size regardless of the original object size.

The upswing in GET IO costs at large request sizes shows
how IO amplification can vary with workload. Larger PUT
requests generate more frequent FLUSHs of the size-limited
WAL, due to the higher IO bandwidth. This in turn expands
the set of live data files until a COMPACT can merge them.
Since PUTs writes keys uniformly over the keyspace, each
FLUSHed data file spans a large section of the keyspace.
Finding a random GET key forces LevelDB to search a greater
number of eligible data files, at the cost of at least one (4KB)
index block read per file. In contrast, the last workload in the
figure stresses different regions of the keyspace for GETs and
PUTs. Here, the 32KB GETs terminate after searching only a
single (pre-existing) indexed data file covering its key range.

3.2 Unpredictable IO interference
IO throughput can vary drastically and unpredictably with the
type of workload (read vs.write, random vs. sequential) and
IOP size. Modern storage engines intentionally sequentialize
their IO accesses when possible, e.g., by using write-ahead
logs and batching, to mitigate interference and improve per-
formance. Sequential workloads are generally more efficient
than their random counterparts, even for SSDs [1]. However,
as more distinct tenants access a storage node, the overall IO
workload becomes more random due to request interleaving,
which can degrade IO throughput.

Despite having much more consistent random IO perfor-
mance than HDDs, which are bound by mechanical seek de-
lay, SSDs still experience considerable read/write interference.
SSDs exploit die-level parallelism [1] (i.e., multiple NAND
chips and data channels) to stripe and interleave reads and
writes, which reduces resource contention. However, writes
are generally much more expensive than reads. Not only do
SSD NAND writes take longer to complete than reads [26],
but they also incur a large erase-before-write penalty. The
SSD must first clear a set of data blocks (4-8 KB) in erase-
block increments (≥ 256 KB) before overwriting them with
new values. When interleaved, write ops can adversely affect
read latency and overall IOP throughput.

SSD firmware typically employs a log-structured approach
to minimize the effects of the overwrite penalty by first ap-
pending new data writes onto pre-erased blocks. It then man-
ages a “flash-translation layer” in memory that maps the
logical block address of the modified data to the new physical
block address. However, the SSD must occasionally perform
garbage collection to replenish its pool of pre-erased blocks.
When write sizes are small and random, this process can in-
cur a heavy read-merge-write penalty, similar to LSM-Tree
compaction, to write out data in erase-block increments.

3.3 Non-linear IO performance
SSD throughput can be characterized along two basic axes: IO
operation throughput (IOP/s) and data bandwidth. Although
the latter is a function of the former (BW = IOP × op-size),
both vary non-linearly with operation size due to shifting

4

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 4 8 16 32 64 128 256

IO
P

(k
op

/s
)

Op Size (KB)

Read IO Performance

 1 2 4 8 16 32 64 128 256
 0

 50

 100

 150

 200

 250

Ba
nd

wi
dt

h
(M

B/
s)

Op Size (KB)

Write IO Performance
Rand BW

Seq BW
Rand IOP

Seq IOP

Figure 3: SSD IOP/s and bandwidth vary non-linearly
with IOP size. The measurements were made on an Intel
320 series SSD formatted with the ext4 filesystem.

bottlenecks, as shown in Figure 3. IOP throughput peaks at
small IOP sizes for both reads and writes, where the SSD is
processor bound by its controller and on-die logic. Thereafter,
IOP throughput decreases sub-linearly until the bandwidth
bottleneck (i.e., SATA bus and SSD data channels) takes hold,
around 64KB for reads and 32KB for writes. Further, filesys-
tem (ext4) overhead affects sequential IO performance more
than random IO in these experiments. Yet we account for
these anomalies, as the storage stack sits above the filesystem.

Accounting for only one of these IO bottlenecks can leave
the system underutilized. For example, in DynamoDB, one
100KB GET costs the same as one hundred 1KB GETs [6]. If
we directly translate this pricing model to an IO cost model,
then IOP cost would vary linearly with IOP size while band-
width cost remains constant. However, at small IOP sizes, the
IOP bottleneck throttles bandwidth far below the maximum,
which means that the effective max throughput is limited by
the worst case (small IOP size) workload. Hence, a 100KB
GET costs more than it should since it is treated the same as
one hundred IOP-limited 1KB GETs. On the other hand, if
IOP cost is fixed, as in Amazon’s provisioned EBS, then the
resource model would have to constrain IOP throughput by
the bandwidth bottleneck at large IOP sizes. Thus, if the IO
resource model fails to account for both resource bottlenecks,
IO throughput will be left fallow and underutilized.

4. Achieving Tenant Reservations
Libra addresses the challenges of IO amplification, interfer-
ence, and non-linear performance by tracking IO cost, quanti-
fying IO capacity, and modeling IO cost.

4.1 Determining application request cost
The key to determining the IO cost of an application request
is to account for both its direct and indirect IO. In Libra,
the persistence engine tags each IO task with its associated
app-level request (e.g., GET or PUT) and internal persistence
engine operation (e.g., FLUSH or COMPACT), when needed.
Libra uses these tags to track both the direct tenant resource
consumption (ut

a for tenant t and app-request a) and the in-
direct resources consumed by internal operation i on behalf
of a (ut

i). These tags also indicate how often an app-request

triggers an internal operation (et
a,i), which allows Libra to

build a statistical model of resource usage that accounts for
the amplified IO cost of a tenant’s application request.

While the Libra scheduler updates the resource consump-
tion counters on each IO task execution, the Libra re-
source policy periodically (once per second in our proto-
type) (re)computes the app-request resource profiles and
(re)provisions tenant IO resource allocations accordingly. In
each policy interval, Libra computes the per app-request
and per operation resource costs q for each tenant as an
exponentially-weighted moving average (EWMA)

qt
a = EWMA(ut

a/st
a)

qt
i = EWMA(ut

i/st
i)

where st
a and st

i are the number of normalized (1KB) requests
and internal operations executed over the interval, respec-
tively. From these base costs, Libra computes the indirect
resource cost qt

a,i by scaling the internal operation cost by
how often the app-request triggers the operation on average:

qt
a,i = qt

i

et
a,i

st
a

Some internal operations, especially COMPACT, are trig-
gered sporadically and may take many intervals to complete.
To handle this case, Libra normalizes qt

a,i by the total number
of requests executed since the last trigger, instead of just over
the current interval, and attributes partial resource consump-
tion for ongoing operations. Note that the resources costs
only capture application-induced IO amplification. OS-level
effects due to filesystem operations or SSD-internal read-
modify-write operations are beyond Libra’s reach and are
rolled into the underlying IO cost model.

Combined together, these resource costs give the full app-
request resource profile, which the resource policy uses to
determine the IO resource allocation rt

a needed to provision
each tenant app-request reservation vt

a:

profilet
a = qt

a +
∑

i

qt
a,i

rt
a = vt

a · profilet
a

These allocations must not exceed the IO throughput capacity
of the node. Normally, Libra’s IO capacity model prevents
overbooking by enforcing a lower limit on provisionable IO.
However, under worst-case IO amplification and workload
fluctuation, the storage node may not be able to satisfy the
tenants’ reservations. Under these overflow conditions, the
resource policy scales down each tenant’s resource allocation
proportionally to fit within the capacity constraint. Libra then
notifies higher-level policies of the violation along with its
current view of IO capacity and app-request resource profiles.
If the storage node is underbooked, the scheduler shares any
unallocated resources among the tenants proportionally.

4.2 Estimating IO throughput capacity
Libra requires a robust IO capacity model to ensure that its
provisioned allocations can be met, even in the presence of

5

1:1 Read/Write Mix

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

W
rit

e
IO

P
Si

ze
 (K

B) 99:1 Read/Write Ratio

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

75:25 Read/Write Ratio

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

 20
 25
 30
 35
 40

VO
P

(k
op

/s
)

50:50 Read/Write Ratio

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

W
rit

e
IO

P
Si

ze
 (K

B) 25:75 Read/Write Ratio

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

1:99 Read/Write Ratio

 1 2 4 8 16 32 64 128 256
 1
 2
 4
 8

 16
 32
 64

 128
 256

 20
 25
 30
 35
 40

VO
P

(k
op

/s
)

50:50 Read/Write, Variance 4K

 1 2 4 8 16 32 64 128 256
Read IOP Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

W
rit

e
IO

P
Si

ze
 (K

B)

50:50 Read-write, Variance 32K

 1 2 4 8 16 32 64 128 256
Read IOP Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

50:50 Read/Write, Variance 256K

 1 2 4 8 16 32 64 128 256
Read IOP Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

 20
 25
 30
 35
 40

VO
P

(k
op

/s
)

Figure 4: IO throughput varies unpredictably with IO interference. Throughput valleys (darkest regions) shift with
read/write ratio and overall performance flattens out as IOP size variance increases. Each heat map shows experiments
across a range of read (x-axis) and write (y-axis) IOP sizes from 1 KB to 256 KB.

IO interference. Since tenants can generate a diverse IO
workloads that may change over time, this estimate of provi-
sionable IO resources should be a lower bound on the actual
capacity to prevent overbooking and SLA violations. Ide-
ally, IO interference would be both mild and predictable.
This would allow Libra to model fluctuations with a simple,
tractable capacity model that tightly bounds a smooth capac-
ity curve. Unfortunately, we find that the effect of interference
on IO capacity can be both severe and unpredictable.

To quantify the effects of IO interference in Libra, we ran
a series of experiments exercising different read-write work-
loads over a range of IOP sizes. In each experiment, the 8
tenants issue low-level IO requests to the Libra scheduler
according to two backlogged random-access workloads of
the specified IOP sizes. In the 1:1 workload, half the tenants
act exclusively as readers and the other half as writers. For
mixed request-type workloads, each tenant issues both reads
and writes according to the specified ratio. Lastly, in vari-
able IOP-size workloads, each tenant samples IOP sizes from
a log-normal distribution with the specified variance. Note
that all tenants have an equal allocation of IO resources and
equal demand specified by a bounded number of concurrent
IO request workers. For the SSD in question (an Intel 320),
the interference-free maximum IO throughput is 37.5 kop/s,

measured in VOP/s. As described in §4.3, barring interfer-
ence, fully backlogged tenants should achieve the full VOP/s
throughput regardless of IOP size and operation type. Other
SSDs (OCZ Vector and Samsung 840 Pro) behaved similarly.

Figure 4 shows that IO throughput is highly sensitive to the
workload ratio of reads and writes. For exclusive reader-writer
(1:1) and read-dominant (99:1) workloads, IO interference is
relatively mild. IO throughput varies between 29 and 37 kop/s
across most IOP sizes, with the exception of the small read,
large write regime. Here, IO throughput drops below 19 kop/s
due to the delay imposed by large write operations. As the
ratio moves toward writes (75:25), however, IO throughput
decreases dramatically. The throughput valley spreads out
over the small read, medium write region. With the higher
mix of writes, each tenant experiences increased IO interfer-
ence from its own workload since its IO workers eventually
bottleneck on the more expensive write operations, delaying
the cheaper reads. At a 50:50 ratio, the throughput valley
migrates to medium-sized reads and starts to shrink. Under
write-heavy (25:75) workloads, IO throughput improves due
to the more uniform workload of higher cost writes and fewer
delayed reads. The valley moves further along the read axis to
larger op sizes. Write-dominant (1:99) workloads experience
little IO degradation except at large write sizes.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2 2.2

Pc
t o

f R
ea

d/
W

rit
e

Ex
pe

rim
en

ts

Normalized IO Throughput

75:25 Read/Write
75:25 m = 4K

75:25 m = 32K
75:25 m = 256K

50:50 Read/Write
25:75 Read/Write

Figure 5: CDF of IO throughput for the IOP sizes shown
in Figure 4. Solid lines correspond to workloads with uni-
form IOP sizes, while dashed and dotted line workloads
issue variable request sizes with the indicated σ.

Randomizing IOP sizes—shown in the last row of Fig-
ure 4—consistently degrades IO throughput. The larger the
IOP-size variance, the lower and flatter the IO throughput
graph becomes. This is due to the increasing likelihood of
sampling IOP sizes from high interference regions. To better
illustrate this trend, Figure 5 replots the results as a CDF of
IO throughput normalized by the minimum achieved through-
put (∼18kop/s). Experiments are sorted by their normalized
throughput. For each read-write ratio, as IOP-size variance
increases, IO throughput drops closer to the minimum value.

These experiments illustrate the highly unpredictable be-
havior of IO throughput under interfering workloads. Model-
ing throughput variation across all possible read/write ratios
could be computationally expensive and susceptible to over-
fitting, which could lead to overestimates of IO throughput.
Libra takes a more robust and conservative approach by us-
ing the floor of the capacity curve—18 kop/s for this SSD
configuration—to (under)estimate the provisionable IO capac-
ity. The resource policy is free to provision tenant IO within
this limit, but no more. While Libra can also monitor the
current IO capacity to detect infeasible IO allocations, it uses
the IO capacity threshold as a consistent bound for local ad-
mission control and to inform the placement and throughput
distribution decisions handled by higher-level policies.

Under light IO interference this approach may leave up to
half of the maximum IO capacity (37.5 kop/s) unavailable
for provisioning. However, it is the safer option for complex
persistence engines that continually generate secondary read
and write IO operations of variable size and for realistic key-
value workloads that issue variable size requests. For 80%
of the low-variance (4K) workloads in Figure 5, at most one
third of IO throughput is left unprovisioned, but still usable
since Libra is work-conserving.

4.3 Defining an IO metric and cost model
The IO throughput metric and its associated cost model are
essential for resource accounting, provisioning, and capacity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 4 8 16 32 64 128 256

Vi
rtu

al
 IO

P
C

os
t (

op
/K

B)

IOP Size (KB)

read IO cost
write IO cost

Figure 6: Libra IO cost model.

estimation. Any viable metric should fulfill three key crite-
ria: (i) present a unified view of IO throughput (ii) capture
the inherent non-linearity of the IO performance curves and
(iii) provide an intuitive measure of capacity and cost. Given
these criteria, neither disk bandwidth nor raw IOP through-
put alone are suitable metrics. Recently, allocation schemes
like dominant resource fairness [14] attempt to share mul-
tiple independent resources between its resource principals.
However, since all SSD operations share a common SATA
bus, internal data channel, and controller, IOP throughput
and IO bandwidth are highly correlated across read and write
operations and should be represented by a unified metric.

Existing IO schedulers have generally taken one of two
time-based approaches: explicit time-slicing [8, 26, 32] or
virtual-time fair queuing [19, 28]. Because time-slicing allots
exclusive disk access during a time slice it can lead to wasted
IO throughput and unnecessary delay. If a tenant has less work
in its queue than its current time-slice allows, the remainder of
the slice goes unused. Virtual-time fair queuing, on the other
hand, maintains high utilization by scheduling IO requests
according to virtual start or finish time without introducing
any unnecessary gaps. However, scheduling overhead for
virtual-time fair-queuing can be high (log of the number of
requests) compared to constant-time round-robin scheduling.

In contrast, Libra represents IO throughput directly in terms
of an IO rate with the virtual IOP (VOP). VOPs not only unify
the non-linear bandwidth and IOP performance curves into a
single resource, but also serve as the currency of IO capacity
and cost. Underlying the effectiveness of the VOP is an IO
cost model that captures the non-linear dependence of IO per-
formance on IO request size. While the VOP is a close analog
of virtual-time from a fair-queuing scheduling perspective, it
allows for more efficient round robin scheduling and provides
an arguably more intuitive notion of IO performance. Libra
uses the VOP resource model to schedule tenant IO, build
app-request resource profiles, provision resource allocations,
and estimate provisionable IO capacity.

The virtual IOP can be thought of as a size-normalized,
variable-cost IOP. Where typical IOP scheduling treats each
(normalized) IOP as equal cost, Libra charges each IOP ac-

7

cording to a non-linear cost model derived directly from the
IOP throughput curves, as shown in Figure 6. Libra calcu-
lates the cost model in terms of VOPs-per-byte by dividing
the max IOP throughput by the achieved (read or write) IOP
throughput, normalized by IOP size.

VOPCPB(IOP-size) =
Max-IOP

Achieved-IOP(IOP-size) × IOP-size

In this model, the maximum IO throughput in VOP/s is con-
stant for the pure read/write throughput curves.

Internally, Libra’s scheduler threads perform distributed
deficit round robin [21] (DDRR) to efficiently schedule par-
allel IO requests (up to 32, which corresponds to the SSD
queue depth). For each IO operation, the scheduler computes
the number of VOPs consumed

VOPcost(IOP-size) = VOPCPB(IOP-size) × IOP-size

and deducts this amount from the associated tenant’s VOP
allocation to enforce resource limits and track resource con-
sumption. DDRR incurs minimal inter-thread synchroniza-
tion and schedules IO tasks in constant time to efficiently
achieve fair sharing and isolation in a work-conserving fash-
ion. In general, virtual-time [12] and round-robin [29] based
generalized processor sharing approximations are susceptible
to IO throughput fluctuations, since they only provide propor-
tional (not absolute) resource shares. However, Libra’s IO
capacity threshold ensures that each tenant receives at least its
allocated share. Any excess capacity consumed by a tenant
can be charged as overage or used by best-effort tenants.

The VOP cost model allows Libra to charge an IO opera-
tion in proportion to its actual resource usage. For example,
10000 1KB reads, 3000 1KB writes and 160 256KB reads all
represent about a quarter of the SSD IO throughput at their
respective IOP sizes. Hence, Libra charges each workload
the same 10000 VOP/s, or about one quarter of the max IOP
capacity. Thus, barring interference effects, Libra can divide
the full IO throughput arbitrarily among tenant workloads
with disparate IOP sizes. Note that while the shape of the
read and write VOP cost curves are similar, their magnitudes
reflect the relative cost of their operations. Writes are always
more expensive than reads, but the gap diminishes as IOP
sizes increase, due to lower erase block compaction overhead.

Determining the VOP cost model and minimum IO capac-
ity for a particular SSD configuration requires benchmarking
the storage system using a set of experiments similar to the
ones described for the throughput curves. While these ex-
periments are by no means exhaustive, they probe a wide
range of operating parameters and give a strong indication
of SSD performance and the minimum VOP bound. Patho-
logical cases where IO throughput drops below the minimum
can be detected by Libra, but should be resolved by higher-
level mechanisms. Assuming timely resolution, these minor
throughput violations can be absorbed by the provider’s SLA,
e.g., EBS guarantees 90% of the provisioned throughput over
99.9% of the year [4].

5. Implementation
Libra exposes a posix-compliant IO interface, wrapping the
underlying IO system calls to enforce resource constraints and
interpose scheduling decisions. To utilize Libra, applications,
i.e., persistence engines, simply replace their existing IO sys-
tem calls (read, write, send, recv, etc) with the corresponding
wrappers. Libra also provides a task marking API for appli-
cations to tag a thread of execution (task) and its associated
IO calls with the current app-request or internal operation
context. The Libra IO scheduling framework is implemented
in ∼20000 lines of C code as a user-space library.

Libra employs coroutines to handle blocking disk IO and
inter-task coordination, i.e., mutexes and conditionals. Corou-
tines allow Libra to pause a tenant’s task execution by swap-
ping out processor state, i.e., registers and stack pointer, to a
compact data structure and resume from a different coroutine.
Libra uses this facility to reschedule an IO task on resource
exhaustion or mutex lock. This allows Libra to delay IO
operations that would otherwise exceed a tenant’s resource al-
location until a subsequent scheduling round when the tenants
resources have been renewed. Libra defaults to synchronous
disk operations (O SYNC), disables all disk page caching
(i.e., O DIRECT on linux). The page cache masks IO la-
tency and queue back pressure, which undermines Libra’s
scheduling decisions and capacity model. We also run Libra
in tandem with a noop kernel IO scheduler to force IOPs to
disk with minimal delay and interruption.

Enabling Libra in our LevelDB-based storage prototype re-
quired less than 30 lines of code for replacing system calls and
marking application requests. However, unlocking LevelDB’s
full performance for synchronous PUTs required extensive
modifications. Our prototype enables parallel writes to take
full advantage of SSD IO parallelism (LevelDB serializes
all client write threads by default). It also issues sequential
writes (e.g., FLUSH) in an asynchronous, io-efficient manner
(LevelDB defaults to memory mapped IO which is incompati-
ble with O DIRECT). Lastly, our prototype runs FLUSH and
COMPACT operations in parallel (LevelDB schedules both
in the same background task).

We implemented Libra as a user-space library for two main
reasons. First, the model of multi-tenancy model we support
at the storage node is a single process with multiple threads
that handle requests from any tenant, frequently switching
from one tenant to another. This model is commonly used by
high-performance key-value storage servers [7, 11]. Existing
kernel mechanisms for multi-tenant resource allocation, (e.g.,
linux cgroups [22]), work well for the process-per-tenant
model where tasks (processes or threads) are bound to a sin-
gle cgroup (tenant) over their lifetime. Frequent switching
between cgroups, however, is slow due to lock contention in
the kernel. Second, tracking app-request resource consump-
tion across system call boundaries requires additional OS
support for IO request tagging (as described in [24]), which

8

is beyond the scope of this work. Conceptually, the VOP re-
source model should work in the OS scheduler, but we leave
an in-kernel implementation to future work.

6. Evaluation
In this evaluation, we examine how well Libra addresses IO
amplification, interference, and non-linear performance from
the bottom up to answer the following questions.
• Does Libra’s IO resource model capture SSD perfor-

mance and enable accurate resource allocations?

• Does Libra’s IO threshold make an acceptable tradeoff

of performance for predictability in a real storage stack?

• Can Libra ensure per-tenant app-request reservations
while achieving high utilization?

We start with the IO resource model to establish a basis for
accurate resource accounting and allocation. Then we ex-
amine the IO capacity threshold to confirm its viability for
provisioning IO resources under key-value workloads. Lastly,
we evaluate Libra’s ability to achieve tenant app-request reser-
vations with all mechanisms in place.

6.1 Experimental Setup
We ran our experiments on two separate configurations using
three different SSDs. The lower spec machine runs Ubuntu
11.04 on two 2.4 GHz Intel E5620 quad-core CPUs, 12GB
of memory, and a SATA II 160 GB Intel 320 series SSD.
The higher spec machine runs Ubuntu 12.04.2 LTS on two
3.07 GHz Intel X5675 hexa-core CPUs, 48 GB of memory,
and two SATA III SSDs: a 256 GB Samsung 840 Pro and a
256 GB OCZ Vector. All SSDs are ext4 formatted. The three
SSDs allow us to evaluate the Libra over a range of controller
architectures (Intel, Samsung, and Indilinx) and bandwidths
(3 Gbps for SATA II and 6 Gbps for SATA III). All experi-
ments run with a queue depth of 32 and backlogged demand
since Libra is designed for high-utilization environments.

6.2 Libra achieves accurate IO allocations
To measure the accuracy of resource allocation, we use the
IO throughput ratio xt of achieved throughput over expected,
as well as the Min-Max Ratio (MMR) of xt over all tenants t:

xt =
rt

achieved

rt
allocated

; MMR =
mint(xt)
maxt(xt)

Here, expected throughput corresponds to resource proportion.
If a tenant’s allocation commands half the (interference-free)
IO resources, then the expected IO throughput (in bandwidth
or IOP/s) should be half of what the tenant’s workload would
achieve in isolation. Thus, a throughput ratio of 1 indicates
perfect IO insulation [32]. In the same way, a virtual IOPS
allocation should yield a proportional share of the constant
max VOP/s capacity regardless of the workload. Under IO
interference, each tenant’s throughput ratio should drop in
proportion to the decrease in IO performance. For equal VOP

allocations, this means the scheduler should be perfectly fair
and penalize all tenants equally (MMR = 1). To evaluate the
viability and accuracy of the Libra’s IO resource model, we
examine the IOP throughput ratio for a set of 8 tenants(half
readers and half writers) with equal VOP allocations issuing
IO requests over a range of IOP sizes.

Virtual IOP allocation achieves physical IO insulation.
Figure 7 shows the IOP throughput ratios achieved by Li-
bra for the read/write tenants on three different SSDs. Libra
achieves near perfect insulation for all tenants—mean 0.98
tenant throughput MMR averaged over all IOP sizes—on all
SSDs, even when throughput fluctuates with IO interference.
The only significant deviation in throughput ratio occurs on
the Intel SSD at large read IOP sizes, in which the sched-
uler’s chunking scheme breaks up large IOPs (> 128 KB) into
smaller operations as a trade-off for better responsiveness.
Using its IO cost model, Libra is able to share the available
physical IO according to the tenants virtual IOP allocations
and distribute the effect of IO interference, penalizing all
tenants equally regardless of their workload and IOP size.

Figure 7 also illustrates how IO interference varies across
the different SSD architectures. The Intel SSD retains ∼80%
of its throughput under most conditions, except for small
reads coupled with large writes. Both the Samsung and OCZ
SSDs exhibit greater interference for large writes, regard-
less of read size. The OCZ SSD, however, is better able
to parallelize the multi-tenant IO workload compared to the
single-tenant case, yielding throughput ratios > 1.

The Libra IO cost model achieves the best physical IO
allocation. In these next experiments, we compare Libra’s
IO cost model against alternative cost models. To emulate
DynamoDB’s approach, where 100 1KB requests equals one
100KB request, we use a constant VOP cost-per-byte model.
Several virtual-time-based IO schedulers [19, 28] estimate IO
cost using a linear cost model with non-zero intercept. Lastly,
we also model a fixed IOP cost scheme that charges all IOPs
the same, regardless of IOP size. Figure 8 plots the different
IO cost curves, including the curve-fitted Libra cost model,
for the Intel SSD. The IO cost curves for the Samsung and
OCZ SSDs (omitted for space) exhibit the same shape and
behavior. Compared to Libra, the constant model charges a
much higher cost-per-byte, while the linear and fixed models
undercut the Libra cost curve for both reads and writes.

Figure 9 shows the median throughput ratio MMR achieved
by the different IO cost models for the 8 tenants over 64 trials
using the same range of IOP sizes from the previous experi-
ments. All results shown are for the Intel SSD. Only Libra’s
exact and fitted IO cost models were able to achieve a median
MMR greater than 0.9 over all workloads; their difference
is due to the fitted model’s approximation error. Among
the non-Libra approaches, the linear model fairs best with a
0.83 median MMR, since it hews closely to the exact model
near the interpolation end points (i.e., for small and large ops).
However, between the end points, the IO cost deviation results

9

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

IO
P

Th
ro

ug
hp

ut
 R

at
io

Intel SSD (SATA II)

R 1KB
R 4KB

R 8KB
R 16KB

R 32KB
R 64KB

R 128KB
R 256KB

Read Tenants
Write Tenants

Samsung SSD (SATA III)

R 1KB
R 4KB

R 8KB
R 16KB

R 32KB
R 64KB

R 128KB
R 256KB

OCZ SSD (SATA III)

R 1KB
R 4KB

R 8KB
R 16KB

R 32KB
R 64KB

R 128KB
R 256KB

Figure 7: The Libra VOP resource model achieves near perfect (equal) IOP throughput ratios between read and write
tenants on different SSD architectures, even in the presence of IO interference (ratio < 1). Read IOP size is fixed for each
experiment in a cluster, while write IOP size logarithmically increases from 1 KB to 256 KB. Each read/write tenant
pair within a cluster represents a single experiment at a specific read and write IOP size.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 4 8 16 32 64 128 256

VO
P

Co
st

 (o
p/

KB
)

IOP Size (KB)

Read IO Cost Models

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 1 2 4 8 16 32 64 128 256

VO
P

Co
st

 (o
p/

KB
)

IOP Size (KB)

Write IO Cost Models

exact
fitted

constant
linear
fixed

Figure 8: Virtual IOP cost models.

in skewed allocations and lower MMR. Despite egregiously
over-charging IOP sizes greater than 1KB, the constant model
is able to maintain a rough balance (> 0.5 MMR) between
the read and write workloads because it over-charges them
equally. In the fixed model, IO cost decreases so quickly that
tenants with larger IOP sizes (> 16 KB) are able to execute
more IO requests than they should, which leads to skewed
throughput ratios. Results for the Samsung and OCZ SSDs
were similar, though the linear model was able to achieve bet-
ter insulation with median MMR close to 0.9. This is due to
the lower IO throughput variance for those devices. However,
medium IOP sizes still suffer (MMR < 0.8).

The Libra scheduler achieves accurate VOP alloca-
tions. Using virtual IOPs, the Libra scheduler is able to
enforce physical IO insulation between tenants given their
VOP allocations. Enforcing accurate VOP allocations, in
turn, ensures that Libra can deliver on its provisioned IO
resource allocations for achieving app-level request reserva-
tions. Ideally, Libra’s scheduler should provide accurate VOP
allocations regardless of cost model. As the bottom graph in
Figure 9 shows, the Libra’s fitted and exact IO cost models
also achieve the most accurate VOP allocations across all
workloads and IOP sizes with median MMR > 0.98 and min
MMR no lower than 0.91. Both the linear and fixed models
also achieve accurate allocations (median MMR > 0.94). The
constant cost model trails behind (median MMR < 0.9) due to
its gross underestimate of large IOP cost, which allows those
tenants to over-consume physical IO. Conversely, as the large
IOPs take much longer to complete, they trigger timeouts that
prematurely advance the scheduling round, which results in

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

rw rr ww

Ac
cu

ra
cy

 (M
M

R)

IOP Insulation Accuracy

Write-WriteRead-ReadRead-Write

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

rw rr ww

Ac
cu

ra
cy

 (M
M

R)
Virtual IOP Allocation Accuracy

exact fitted linear constant fixed
Write-WriteRead-ReadRead-Write

Figure 9: IOP insulation reflects how well a cost model
captures tenant IOP cost while VOP allocation corre-
sponds to the allocation and accounting fidelity of the
Libra scheduler for enforcing tenant VOP shares. Each
MMR bar (median with min/max error) summarizes the
MMR results over the set of workloads shown in Figure 7.

VOP under-consumption. These results confirm that poor IO
throughput insulation is due to IO cost model inaccuracies
and not faulty scheduler VOP accounting.

6.3 Libra trades nominal throughput for pro-
visionable IO guarantee

Per Section 4.2, IO interference can be both severe and unpre-
dictable for mixed tenant workloads. In light of this workload-
dependent variability, Libra sets the provisionable IO capacity
to a VOP threshold of 18 kop/s. To understand whether this
“floor” is a viable underestimate of provisionable capacity in a
real storage stack we examined the IO throughput (in VOP/s)
of our LevelDB-based prototype over a range of app-request
workloads. Recall that LevelDB [20] is an LSM-tree-based
key-value store designed to support write-heavy workloads.
All experiments use the Intel SSD to probe the lower bound
of performance; we report results after reaching steady state
for background FLUSH and COMPACT operations.

10

 0
 5

 10
 15
 20
 25
 30
 35
 40

1K 4K 8K 16K
32K

64K
128K

256K
1K 4K 8K 16K

32K
64K

128K
256K

Vi
rtu

al
 IO

P
(k

op
/s

)

GET Workloads PUT Workloads
(a) Pure GET/PUT Workloads

75:25 GET-PUT, Variance 4K

 1 2 4 8 16 32 64 128 256

GET Request Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

PU
T

Re
qu

es
t S

ize
 (K

B)

50:50 GET-PUT, Variance 4K

 1 2 4 8 16 32 64 128

GET Request Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

25:75 GET-PUT, Variance 4K

 1 2 4 8 16 32 64 128 256

GET Request Size (KB)

 1
 2
 4
 8

 16
 32
 64

 128
 256

 16
 18
 20
 22
 24
 26
 28
 30

VO
P

(k
op

/s
)

(b) Mixed GET/PUT Workloads

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28 30Pc
t o

f G
ET

/P
UT

 E
xp

er
im

en
ts

Virtual IOP (kop/s)

75:25 GET/PUT
50:50 GET/PUT
25:75 GET/PUT

1:99 GET/PUT

(c) CDF of GET/PUT IO Throughput

Figure 10: IO throughput varies widely with tenant app-
request workloads. For 80% of the workloads, Libra’s
IO threshold (18 kop/s) ensures that at least 69% of the
achievable IO throughput (26 kop/s) is provisionable.

As a baseline, we ran pure GET and PUT workloads over
the 1 to 256 KB request size range shown in Figure 10a. For
GET workloads, which exclusively generates read IOPs, our
prototype is able to achieve close to the maximum VOP/s
(38 kop/s) . PUT workloads on the other hand, produce
write operations of varying sizes from secondary FLUSH
and COMPACT operations which issue reads as well. This
interference causes throughput to drop down to 21.8 kop/s.

Mixing GET and PUT requests results in wide-ranging
VOP throughput, as shown in Figure 10b. In these experi-
ments, tenants issue a mix of GET and PUT requests at the
specified ratio. Request sizes are drawn from a log-normal
distribution with the indicated mean and a variance of 4K.
For most request sizes, across all mix ratios, VOP throughput
rarely exceeds 24 kop/s and overall throughput degrades as
the ratio becomes more PUT heavy, with a minimum just
above 16 kop/s. As in the case for raw disk IO, the shape of
the IO throughput also varies as ratio shifts from GET to PUT,
with the throughput valley (dark regions) both expanding its
boundaries and shifting its epicenter. This suggests that the

simple floor capacity model remains the most viable approach
to (under) estimating the provisionable IO throughput.

To understand how much IO throughput Libra leaves un-
provisioned using the VOP floor, we examine the CDF of
IO throughput for the workloads shown in Figure 10c. Here,
the trend towards lower throughput at higher PUT ratios can
be clearly seen, with 80% of the PUT-dominant (1:99) trials
achieving less than 22 kop/s. Over all workload ratios, 80%
of the trials achieve at most 26 kop/s, which leaves just over
30% beyond the reach of the VOP floor (18 kop/s). If we look
at the median, this unprovisionable excess— which remains
usable, just not provisionable in Libra—falls below 20%. The
few cases where VOP throughput may fall below the floor
can be absorbed by the storage SLA in the short-term and ul-
timately resolved by higher-level mechanisms (i.e., partition
migration or redistributing local reservations).

Of course, not all workload ratios and request sizes are
equally likely in practice. For a storage stack with an in-
memory, write-through object cache, we expect most IO-
bound workloads to be PUT-heavy. In most key-value storage
use-cases, object value sizes are relatively small (< 32 KB),
corresponding to the low VOP throughput region of the PUT-
heavy workloads (25:75) and (1:99). These regions account
for the bottom 25% of their CDF curves which fall under 19
kop/s. Here, the VOP floor underestimates the achievable IO
throughput by at most 16%. Note that workloads with highly
variable request sizes diminish IO throughput and further
reduce the unprovisionable excess.

6.4 Libra realizes app-request reservations
Achieving predictable application performance hinges on Li-
bra’s ability to provision local tenant app-request reserva-
tions. Libra builds app-request IO resource profiles using the
VOP resource model to determine the IO resource allocations
needed to satisfy app-level throughput. To evaluate Libra’s
ability to provision app-request reservations, we ran a series
of experiments with 8 tenants exercising a range of different
workloads and under dynamic conditions. Three read-heavy
tenants issue a 90:10 workload of small requests (with mean
4KB GETs and 16KB PUTs). Two mixed 50:50 tenants gen-
erate moderate requests (64KB GETS, 16KB PUTs). Lastly,
three write-heavy 10:90 tenants send large requests (128KB
GETs and PUTs). All request sizes are sampled from a log-
normal distribution, with the specified means and σ = 1KB.

Tracking resource profiles enables accurate app-
request provisioning. Figure 11 shows the results at steady
state throughput both with (top) and without (bottom) track-
ing app-request resource profiles. Initially, all tenants reserve
GET and PUT request rates that evenly divide the underlying
IO resources between the tenants given their full (amplified)
IO cost: 1300 GETs/1100 PUTs for the read-heavy tenants,
4900 GETs/1600 PUTs for mixed, and 290 GETs/2800 PUTs
for the write-heavy tenants. All app-request reservations
(dashed lines) and achieved throughput (solid lines) are given

11

 0
 1
 2
 3
 4
 5
 6
 7

Th
ro

ug
hp

ut
 (k

re
q/

s)

Libra Normalized GET (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

Libra Normalized PUT (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

 100 150 200 250 300

Th
ro

ug
hp

ut
 (k

re
q/

s)

Time (s)

No Profile Normalized GET (1KB)

 0
 1
 2
 3
 4
 5
 6
 7

 100 150 200 250 300
Time (s)

No Profile Normalized PUT (1KB)
read-heavy

mixed
write-heavy

read-heavy res.
mixed res.

write-heavy res.

Figure 11: With app-request profile tracking, Libra
achieves (dynamic) tenant app-request reservations.

in terms of normalized 1KB requests. In both experiments,
Libra is largely able to satisfy the tenant reservations from
time 100 to 200. However, when lacking resource profiles,
Libra provisions tenant VOP resources only in terms of the
application-level object sizes, i.e., without accounting for
secondary IO. This under provisions each allocation. Libra
is thus able to meet the reservations only due to its work-
conserving nature, which allows the tenants to freely share the
unprovisioned resources. If the scheduler were rate-limited,
tenant throughput would fall far short of their reservations.

At time 200, we decreased the app-request reservations for
the read-heavy tenants by 50%, increased those of the write-
heavy tenants by 50%, and left the mixed tenants unchanged.
Under these conditions, Libra is able to fully achieve the de-
sired app-level reservations only when app-request resource
tracking is enabled. Since the write-heavy tenants fill up
the WAL quickly with their frequent large PUT requests,
background FLUSH operations constantly run to keep pace,
consuming a nearly equivalent amount of write IO as the orig-
inal PUTs. By tracking secondary VOP consumption with
the app-request resource profiles, Libra can reprovision the
requisite VOP allocations for the full app-request IO cost,
from 2500 op/s to 3750 op/s. This gives the write-heavy ten-
ants an average PUT throughput of ∼ 4300 PUT/s, satisfying
their reservation of 4200 PUT/s. To afford these additional
resources, Libra decreases the read-heavy VOP allocation
just enough to still provide sufficient GET throughput (∼1300
GET/s) for its reduced app-request reservation. Without track-
ing enabled, Libra can only provision VOPs for the IO di-
rectly consumed by the write-heavy PUT requests. Given the
imbalance of secondary IO costs, proportional sharing only
provides an average PUT throughput of ∼3600 PUT/s, which
violates the write-heavy tenants’ reservations.

Libra adapts to dynamic tenant demand. The second
set of experiments starts with the same initial tenant work-

 0
 1
 2
 3
 4
 5
 6
 7

Th
ro

ug
hp

ut
 (k

re
q/

s)

Normalized GET (1KB)
read-heavy

mixed
write-heavy

 0
 1
 2
 3
 4
 5
 6
 7

Normalized PUT (1KB)
read-heavy res

mixed res
write-heavy res

 0
 1
 2
 3
 4
 5
 6
 7

 100 150 200 250 300 350 400

IO
 C

os
t (

VO
P/

re
qu

es
t)

Time (s)

Normalized GET Request Cost

 0
 0.5

 1
 1.5

Normalized PUT Request Cost
rh COMPACT

rh FLUSH
rh PUT

 0
 0.5

 1
 1.5

 100 150 200 250 300 350 400
Time (s)

wh COMPACT
wh FLUSH

wh PUT

Figure 12: Libra adapts to shifting tenant demand.

loads and reservations. Figure 12 shows the steady app-
request throughput (top) and Libra’s resource cost profiles
(bottom). At time 200, the read-heavy and write-heavy ten-
ants swap workloads—without changing their reservations—
indicating an extreme shift in demand distribution. Then, at
time 300, these tenants also swap their app-request reserva-
tions, which realigns with demand. The mixed tenants remain
unchanged throughout. During the transition phase, the new
read-heavy tenants ramp up their GET request rate slowly
from time 200 to 250, while the new write-heavy tenants tran-
sition quickly from GET to PUT. This lag allows the mixed
tenants to consume excess VOPs and boost throughput. Al-
though Libra provisions VOPs according to the individual
app-request profiles and reservations, it does not impose a
request-specific VOP limit; tenants can freely consume their
VOP allocation according to any GET/PUT distribution.

The bottom graphs show the app-request cost transition
for each tenant. At the outset, write-heavy tenants incur a
highly amplified GET cost from having to search a larger set
of eligible data files (see §3.1). Every so often, a background
COMPACT reduces the data file set, causing the request cost
to drop (and leading to the observed IO cost fluctuations in
the bottom-left graph). As expected, the moderately sized
GETs of the mixed tenants cost less per normalized request
(i.e., per KB) than the read-heavy tenants’ small GETs. For
clarity, we only show the normalized PUT request cost for
one representative read-heavy (rh) and one write-heavy (wh)
tenant (in bottom right). Each graph breaks down the full PUT
request cost by component. Since read-heavy tenants generate
the smallest and fewest writes, they have high per-request
PUT, FLUSH, and COMPACT costs. Write-heavy tenants, on
the other hand, consume the least VOPs per request with their
frequent large writes, which amortizes the cost of secondary
operations across more normalized requests.

When the read- and write-heavy tenants swap workloads
at time 200, Libra captures the shift in their resource profiles.

12

However, because the reservations are misaligned—i.e., large
PUT reservations for expensive read-heavy PUTs, and large
GET reservations for expensive write-heavy GETs—the to-
tal VOP allocation exceeds the provisionable IO throughput.
When overbooked, Libra penalizes the tenants equally. This
results in a throughput drop for the mixed tenants which vio-
lates their reservations, and a gain for the workload-swapped
tenants. Yet after reprovisioning the VOP allocations to
align with the new reservations at time 300, Libra rebalances
throughput and achieves the tenants’ reservations.

7. Related Work
Predictable cloud storage. Most work on provisioning IO
for multi-tenant shared storage have either focused on achiev-
ing tenant service-level objectives (SLO) [23, 33], or provid-
ing proportional shares [18, 26, 28, 30]. Maestro [23] controls
IO port queue depth for local clients accessing a disk array
to achieve tenant-specified throughput and latency SLOs. To
handle IO interference, Maestro uses an adaptive feedback
model to estimate the port queue depths needed to meet ten-
ant requirements. Unlike Libra however, Maestro does not
differentiate IOPs by size, is not explicitly work-conserving,
and only supports a basic block storage API.

Cake [33] also targets tenant SLOs, but for latency-
sensitive tenants accessing a two-tier storage system along-
side batch-workload tenants. Like Maestro, Cake actively
monitors request latency and allocates resources (request han-
dler threads) to meet tenant-specified SLO latencies and en-
sure performance isolation. However, it does not support
explicit per-tenant app-request reservations. Mclock [19] and
Parda [18] provide per-VM hypervisor IO resource alloca-
tion by applying limits and reservations to virtual-time IO
scheduling and client-based IO congestion control respec-
tively. Although Mclock supports IO-level reservations, it
uses a non-optimal linear IO cost model. Neither approach
addresses application-level request reservations.

All the above mentioned systems were designed for HDD-
based systems with much lower IOP throughput performance.
Although the adaptive feedback model works well for the
longer time horizons afforded by HDD performance, it may
not be able to keep pace with the low-latency and high
throughput of SSDs. Tuning the feedback loop to react to IO
interference and resource imbalances on a sub-second level
may be prohibitively expensive. In contrast, Libra’s scheduler
mediates IO resource consumption in real time to enforce
tenant allocations within interference thresholds, while its
resource policy adaptively reprovisions allocations at a longer
time timescale to handle workload-induced IO amplification.

Pisces [30] provides per-tenant weighted fair-shares of
system-wide throughput in a key-value storage system. It
uses a combination of high-level policies to place partitions,
allocate local weights, and distribute load to ensure each ten-
ant receives its aggregate throughput share. At the local node,
Pisces employs DRF [14] to schedule over network resources.

Libra fits into the overall storage model described in Pisces,
but provides app-request throughput reservations in terms of
disk IO resources for tenants that require synchronous writes.
Pisces relies on its in-memory cache to support high read
throughput and persists writes to disk asynchronously.

Disk IO scheduling. The literature is replete with work
on fair IO resource scheduling ranging from the network [12,
16, 29, 31], to CPU [9, 21], to storage [13, 17, 19, 32]. Most
relevant to our work are the FIOS [26] and FlashFQ [28]
IO schedulers for SSD storage. FIOS was one of the first
to address fair resource sharing on SSDs. It highlighted the
write interference behavior peculiar to SSDs and how the
coarse-grained delays and optimizations built into HDD IO
schedulers have adverse affects on SSD performance. FIOS
adapts the traditional time-quanta based approach [8, 32], to
SSD scheduling by incorporating request parallelism, read
prioritization, and judicious use of IO delay to combat decep-
tive idleness. However, as with any time-slicing approach,
FIOS trades off high utilization for better IO insulation and
may induce unnecessary delay.

FlashFQ employs virtual time (VT) to improve responsive-
ness. It issues parallel requests for high throughput while
preserving fair-shares by throttling aggressive tenants via
virtual-time delays. Virtual time, like the virtual IOP, presents
a consistent measure of resource capacity for fair-queuing IO
schedulers. As such, it also depends on having an accurate IO
cost model to be used effectively. Although FlashFQ achieves
fair shares and high utilization, its linear cost model does not
account for the full range of SSD IO performance, leading to
less than ideal IO throughput as shown in our evaluation. VT-
based schedulers also incur higher scheduling overhead than
the round-robin scheduler used in Libra. Lastly, we chose
to use virtual IOPs as our IO metric because it is, arguably,
more intuitive a measure of IO throughput and capacity than
virtual time since it is a rate that closely models IOP cost.

8. Conclusion
Libra addresses several fundamental challenges in achiev-
ing provisioned application-level throughput reservations for
multi-tenant key-value storage. It does so by tracking app-
request IO resource consumption and modeling IO cost and
capacity using virtual IOPs. With its resource consumption
profiles, Libra can track the full, amplified IO cost of each
application-level request and provision tenant throughput
reservations accordingly. These resource profiles also provide
system-wide schedulers with a model of app-request cost to
inform (re)allocation when local demand exceed available
resources. By capturing non-linear SSD performance with
its VOP-based IO cost model, Libra not only realizes more
accurate IO throughput allocations than previous resource
models, but it can also safely provision IO resources for ten-
ant reservations—using its IO capacity threshold—while still
achieving high utilization for a wide range of workloads and
IOP sizes. Together, these two techniques allow Libra to pro-

13

vide the basic per-node building block for shared key-value
storage with provisioned tenant throughput.

Acknowledgments. The authors would like to thank Amy
Tai, Wyatt Lloyd, Erik Nordström, Rob Kiefer, Siddhartha
Sen, Matvey Arye, our shepherd Hitesh Ballani, and the
anonymous Eurosys reviewers for their helpful comments.
This work was supported by funding from a National Science
Foundation CAREER Award (CSR-0953197) and the Intel
Science and Technology Center for Cloud Computing.

References
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. In USENIX Annual, 2008.

[2] Amazon. Relational database service. http://aws.

amazon.com/rds/, 2014.
[3] Amazon. Elastic block storage. http://aws.amazon.

com/ebs/, 2014.
[4] Amazon. EBS Provisioned IOPs. http:

//docs.aws.amazon.com/AWSEC2/latest/

UserGuide/EBSVolumeTypes.html, 2014.
[5] Amazon DynamoDB. http://aws.amazon.com/

dynamodb/, 2014.
[6] Amazon DynamoDB Pricing. http://aws.amazon.

com/dynamodb/pricing/, 2014.
[7] Apache. Cassandra. http://cassandra.apache.

org/, 2014.
[8] J. Axboe. Linux Block IO—present and future. In

Ottawa Linux Symp., 2004.
[9] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng.

Group ratio round-robin: O(1) proportional share
scheduling for uniprocessor and multiprocessor systems.
In USENIX Annual, 2005.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for struc-
tured data. Trans. Computer Systems, 26(2), 2008.

[11] Couchbase. Document-oriented NoSQL database.
http://www.couchbase.org/, 2014.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In SIGCOMM,
1989.

[13] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time
(BVT) scheduling: Supporting latency-sensitive threads
in a general-purpose scheduler. In SOSP, 1999.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness:
Fair allocation of multiple resource types. In NSDI,
2011.

[15] Google. Google cloud SQL. https://cloud.

google.com/products/cloud-sql/, 2014.

[16] P. Goyal, H. M. Vin, and H. Chen. Start-time fair
queueing: A scheduling algorithm for integrated ser-
vices packet switching networks. In SIGCOMM, 1996.

[17] A. Gulati, A. Merchant, and P. J. Varman. pClock:
An arrival curve based approach for QoS guarantees in
shared storage systems. In SIGMETRICS, 2007.

[18] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA:
Proportional allocation of resources for distributed stor-
age access. In FAST, 2009.

[19] A. Gulati, A. Merchant, and P. J. Varman. mClock: Han-
dling throughput variability for hypervisor IO schedul-
ing. In OSDI, 2010.

[20] LevelDB. A fast and lightweight key/value database
library by Google. https://code.google.com/p/
leveldb/, 2014.

[21] T. Li, D. Baumberger, and S. Hahn. Efficient and scal-
able multiprocessor fair scheduling using distributed
weighted round-robin. In PPoPP, 2009.

[22] P. Menage. Cgroups. https://www.kernel.org/

doc/Documentation/cgroups/cgroups.txt,
2014.

[23] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal,
and K. Shin. Maestro: Quality-of-service in large disk
arrays. In ICAC, 2011.

[24] M. Mesnier, F. Chen, T. Luo, and J. B. Akers. Differen-
tiated storage services. In SOSP, 2011.

[25] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4), 1996.

[26] S. Park and K. Shen. FIOS: A fair, efcient flash I/O
schedule. In FAST, 2012.

[27] Rackspace. Cloud Block Storage. http://www.

rackspace.com/cloud/block-storage/, 2014.
[28] K. Shen and S. Park. FlashFQ: A fair queueing I/O

scheduler for flash-based SSDs. In USENIX Annual,
2013.

[29] M. Shreedhar and G. Varghese. Efficient fair queuing
using deficit round-robin. Trans. Networking, 4(3):375–
385, 1996.

[30] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In
OSDI, 2012.

[31] I. Stoica, H. Zhang, and T. S. E. Ng. A hierarchical fair
service curve algorithm for link-sharing, real-time and
priority services. In SIGCOMM, 1997.

[32] M. Wachs, M. Abd-el-malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared stor-
age servers. In FAST, 2007.

[33] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and
I. Stoica. Cake: Enabling high-level SLOs on shared
storage systems. In SOCC, 2012.

14

http://aws.amazon.com/rds/
http://aws.amazon.com/rds/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/pricing/
http://aws.amazon.com/dynamodb/pricing/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://www.couchbase.org/
https://cloud.google.com/products/cloud-sql/
https://cloud.google.com/products/cloud-sql/
https://code.google.com/p/leveldb/
https://code.google.com/p/leveldb/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.rackspace.com/cloud/block-storage/
http://www.rackspace.com/cloud/block-storage/

	Introduction
	Provisioned Key-Value Storage
	Provisioning system-wide throughput
	The Libra IO scheduling framework

	The Problem of Predictability
	Non-uniform IO amplification
	Unpredictable IO interference
	Non-linear IO performance

	Achieving Tenant Reservations
	Determining application request cost
	Estimating IO throughput capacity
	Defining an IO metric and cost model

	Implementation
	Evaluation
	Experimental Setup
	Libra achieves accurate IO allocations
	Libra trades nominal throughput for provisionable IO guarantee
	Libra realizes app-request reservations

	Related Work
	Conclusion

